Start With a Story
The Case Study Method of Teaching College Science

Edited by Clyde Freeman Herreid
Contents

Foreword .. xii

Introduction .. xiii

Section I: The Case for Cases: We Need a New Approach .. 1

- **Chapter 1** Chicken Little, Paul Revere, and Winston Churchill Look at Science Literacy 3
 Clyde Freeman Herreid

- **Chapter 2** The Maiden and the Witch: The Crippling Undergraduate Experience 15
 Clyde Freeman Herreid

- **Chapter 3** Saint Anthony and the Chicken Poop: An Essay on the Power of Storytelling in the Teaching of Science ... 19
 Clyde Freeman Herreid

- **Chapter 4** Storyteller’s Box: Opening the Doors to Science Case Studies 25
 Clyde Freeman Herreid

Section II: What Are Case Studies? .. 27

- **Chapter 5** Case Studies in Science: A Novel Method of Science Education 29
 Clyde Freeman Herreid

- **Chapter 6** What Is a Case? Bringing to Science Education the Established Teaching Tool of Law and Medicine ... 41
 Clyde Freeman Herreid

- **Chapter 7** What Makes a Good Case? Some Basic Rules of Good Storytelling Help Teachers Generate Excitement in the Classroom 45
 Clyde Freeman Herreid

- **Chapter 8** The Business End of Cases ... 49
 Clyde Freeman Herreid

Section III: Types of Case Studies ... 53

- **Chapter 9** Sorting Potatoes for Miss Bonner: Bringing Order to Case Study Methodology Through a Classification System .. 55
 Clyde Freeman Herreid
Section IV: How to Teach with Case Studies: An Overview

<table>
<thead>
<tr>
<th>Chapter 10</th>
<th>Can Case Studies Be Used to Teach Critical Thinking?</th>
<th>Clyde Freeman Herreid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 11</td>
<td>Naming Names: The Greatest Secret in Leading a Discussion Is Using Students’ Names</td>
<td>Clyde Freeman Herreid</td>
</tr>
<tr>
<td>Chapter 12</td>
<td>Opening Day: Getting Started in a Cooperative Classroom</td>
<td>Frank J. Dinan</td>
</tr>
<tr>
<td>Chapter 13</td>
<td>Using Students as Critics in Faculty Development</td>
<td>Clyde Freeman Herreid and Arnold I. Kozak</td>
</tr>
</tbody>
</table>

Section V: Whole Class Discussion: The Classical Method

Chapter 14	Using Novels as Bases for Case Studies: Michael Crichton’s State of Fear and Global Warming	Clyde Freeman Herreid
Chapter 16	Bad Blood: A Case Study of the Tuskegee Syphilis Project	Ann W. Fourtner, Charles R. Fourtner, and Clyde Freeman Herreid
Chapter 17	Case Study Teaching in Science: A Dilemma Case on “Animal Rights”	Clyde Freeman Herreid
Chapter 18	Is There Life on Mars? Debating the Existence of Extraterrestrial Life in a Classroom Dilemma Case	Bruce C. Allen and Clyde Freeman Herreid

Section VI: Small Group Methods: An Overview

| Chapter 19 | Why Isn’t Cooperative Learning Used to Teach Science? | Clyde Freeman Herreid |
| Chapter 20 | The Bee and the Groundhog: Lessons in Cooperative Learning—Troubles With Groups | Clyde Freeman Herreid |
Chapter 21 I Never Knew Joe Paterno: An Essay on Teamwork and Love141
 Clyde Freeman Herreid

Chapter 22 The Pima Experience: Three Easy Pieces..147
 Clyde Freeman Herreid

SECTION VII: PROBLEM-BASED LEARNING ...151

Chapter 23 The Death of Problem-Based Learning? ..153
 Clyde Freeman Herreid

Chapter 24 AIDS and the Duesberg Phenomenon ...157
 Clyde Freeman Herreid

Chapter 25 The Petition: A Global Warming Case Study ..161
 Bruce C. Allen and Clyde Freeman Herreid

SECTION VIII: INTERRUPTED CASE METHOD ..167

Chapter 26 The Interrupted Case Method ..169
 Clyde Freeman Herreid

Chapter 27 Mom Always Liked You Best: Examining the Hypothesis of
 Parental Favoritism171
 Clyde Freeman Herreid

SECTION IX: INTIMATE DEBATE METHOD ..179

Chapter 28 The Intimate Debate Method: Should Marijuana Be Legalized for
 Medicinal Purposes?181
 Clyde Freeman Herreid and Kristie DuRei

SECTION X: TEAM-BASED LEARNING ..187

Chapter 29 Larry Finally Wrote His Book: Team-Based Learning Has Its Bible189
 Clyde Freeman Herreid

Chapter 30 Using Case Studies in Science—And Still “Covering the Content”195
 Clyde Freeman Herreid

Chapter 31 An Application of Team Learning in Dental Education.......................205
 Frank A. Scannapieco and Clyde Freeman Herreid
Chapter 32 Of Mammoths and Men: A Case Study in Extinction .. 211
 Nancy A. Schiller and Clyde Freeman Herreid

SECTION XI: LARGE CLASS METHODS .. 219

Chapter 33 “Clicker” Cases: Introducing Case Study Teaching Into Large Classrooms .. 221
 Clyde Freeman Herreid

Chapter 34 The Case of the Druid Dracula: A Directed “Clicker” Case Study on DNA Fingerprinting ... 227
 Peggy Brickman

SECTION XII: INDIVIDUAL CASE STUDY METHODS .. 237

Chapter 35 Dialogues as Case Studies—A Discussion on Human Cloning: Creating Drama and Controversy in the Science Classroom ... 239
 Clyde Freeman Herreid

Chapter 36 Student Paper on the Atlantic Salmon Controversy 247
 Helena Bokobza

SECTION XIII: HYBRID CASE METHODS .. 251

Chapter 37 Alien Evolution—A Futuristic Case Study: The Return of the Cambrian Explosion ... 253
 Shoshana Tobias and Clyde Freeman Herreid

Chapter 38 What to Do About Mother: Investigating Fetal Tissue Research and the Effects of Parkinson’s Disease ... 265
 Ann W. Fourtner, Charles R. Fourtner, and Clyde Freeman Herreid

Chapter 39 The Galapagos: A Natural Laboratory for the Study of Evolution 271
 Nancy A. Schiller and Clyde F. Herreid

Chapter 40 Structured Controversy—A Case Study Strategy: DNA Fingerprinting in the Courts ... 285
 Clyde Freeman Herreid

Chapter 41 A Word to the Wise? Advising Freshmen .. 295
 Jessica Dudek, Nigel Marriner, and Clyde Freeman Herreid

SECTION XIV: THE DIRECTED CASE METHOD ... 299
Chapter 42 The Directed Case Method: Teaching Concept and Process in a Content-Rich Course ...301
William H. Cliff and Leslie Nesbitt Curtin

Chapter 43 Little Mito: The Story of the Origins of a Cell ...307
Stephanie Vail and Clyde Freeman Herreid

Chapter 44 The Death of Baby Pierre: A Genetic Mystery ...313
Clyde Freeman Herreid

Chapter 45 The Case of the Dividing Cell: Mitosis and Meiosis in the Cellular Court...319
Clyde Freeman Herreid

SECTION XV: HOW NOT TO TEACH WITH CASE STUDIES ...331

Chapter 46 Return to Mars: How Not to Teach a Case Study ...333
Clyde Freeman Herreid

Chapter 47 Why a “Case-Based” Course Failed: An Analysis of an Ill-Fated Experiment...339
Clyde Freeman Herreid

Chapter 48 DON’T! What Not to Do When Teaching Case Studies ...343
Clyde Freeman Herreid

SECTION XVI: HOW TO WRITE CASE STUDIES ..349

Chapter 49 Case Studies and the Media ...351
Frank J. Dinan

Chapter 50 Cooking With Betty Crocker: A Recipe for Case Study Writing ..355
Clyde Freeman Herreid

Chapter 51 Too Much, Too Little, or Just Right? How Much Information Should We Put Into a Case Study? ...361
Clyde Freeman Herreid

Chapter 52 The Way of Flesch: The Art of Writing Readable Cases ...365
Clyde Freeman Herreid

Chapter 53 Twixt Fact and Fiction: A Case Writer’s Dilemma ...371
Clyde Freeman Herreid

Chapter 54 An Open or Shut Case? Contrasting Approaches to Case Study Design375
William H. Cliff and Leslie M. Nesbitt
Chapter 55 Racism and All Sorts of Politically Correct Isms in Case Studies.
What Are We To Do? ..381
Clyde Freeman Herreid

SECTION XVII: HOW TO WRITE CASE STUDY TEACHING NOTES385

Chapter 56 And All That Jazz: An Essay Extolling the Virtues of Writing Case Teaching Notes ..387
Clyde Freeman Herreid

SECTION XVIII: HOW TO GRADE STUDENTS USING CASE-BASED TEACHING393

Chapter 57 When Justice Peeks: Evaluating Students in Case Study Teaching395
Clyde Freeman Herreid

SECTION XIX: ASSESSMENT AND EVALUATION OF THE CASE STUDY PROCESS401

Chapter 58 Coplas de Ciego ..405
Clyde Freeman Herreid

Chapter 59 Assessment of Case Study Teaching: Where Do We Go From Here? Part I407
Mary A. Lundeberg and Aman Yadav

Chapter 60 Assessment of Case Study Teaching: Where Do We Go From Here? Part II...413
Mary A. Lundeberg and Aman Yadav

SECTION XX: THE FUTURE OF CASE TEACHING ..421

Chapter 61 Paul Seymour, Assistant Professor: A Dilemma Case in Teaching423
Clyde Freeman Herreid

Chapter 62 Teaching in the Year 2061 ..429
Clyde Freeman Herreid

Chapter 63 E-Mail From Socrates ..437
Clyde Freeman Herreid

Appendix I About the Authors ..443

Appendix II Original Chapter References ..445
Dedication

For Jan

Kimberly, John, Ky, Jennifer

Sierra, Roxanna, Miranda, Phoebe, and Ayden

Teachers and Students All.
Foreword

Clyde (Kipp) Herreid’s work in creating and compiling case studies for undergraduate science instruction and developing case methods previously reserved mainly for law and medical students stands as a major contribution to undergraduate science instruction, fulfilling the vision we had when we invited him to write a regular column on case instruction for the Journal of College Science Teaching more than a decade ago. The quality of those columns was so high and their content often so innovative that we soon invited him to prepare an extra annual issue devoted exclusively to case instruction.

For many of us who had experienced much of our science preparation through lectures, the cases presented in Kipp’s columns were often exciting to read because they gave us a new methodology that clearly had the potential to enrich our own teaching. Instead of only helping students master material in a text, we had to think about the case problem and ways to approach it. In addition, these cases were interesting enough that we would read cases in disciplines other than our own, often finding issues and connections requiring cross-disciplinary approaches. Cases provide ample opportunity for students to think creatively. They can be used as stand-alone activities or in combination with texts and journal articles. Used thoughtfully, they can help instructors convey a sense of scientific inquiry that more traditional approaches might find difficult to match.

Watching Kipp leading NSF Chautauqua short courses on the case method for college faculty was always illuminating because of the way he involved participants. It is not easy to sustain any group’s interest during three solid days of instruction, to say nothing of the challenge of motivating experienced instructors, but by using cases, Kipp was able to do so with aplomb. He made it look easy, but he is a master teacher with many years of experience. Now, this special volume will enable us to have at our fingertips Kipp’s thoughtful analyses of ways to use cases in many classroom settings. This fine collection deserves a place on the bookshelf of all those who want to enrich their own teaching and should surely be standard issue for new faculty and graduate teaching assistants. Our community of teaching scientists has a rare resource here and we have Kipp Herreid, his colleagues at the National Center for Case Study Teaching in Science and the other contributors to this volume to thank for it.

Les Paldy, Editor Emeritus, Journal of College Science Teaching, Distinguished Service Professor, Stony Brook University, State University of New York
INTRODUCTION

I first heard about case study teaching from a neighbor—a lawyer who had taught at Cornell University and had been trained at Harvard. He and I were standing in the middle of our country road talking about teaching and education, as it was in the first few hours of our acquaintance. I asked him how he taught law. He paused and then said the magic words, “I use case studies.”

He explained that lawyers used real cases in their classrooms to teach the principles of law and precedence. They discussed this with their students, teaching law as they used case after case. They had been doing this for a hundred years.

I had been searching for new ways of teaching for a long time. The lecture method had paled for me over time. I didn’t know it then, but well over a thousand studies had demonstrated the inferiority of the lecture method compared to active learning strategies. I had started out my teaching career like so many young PhDs without a shred of training and was thrown into the classroom and told to “teach.” So, I taught like my mentors—I lectured. As I suffered through my first year’s teaching, racing through my lectures, pouring out all of the information that I had gleaned the night before, scrambling to keep ahead of the students, never once did it occur to me that there were other ways to teach. True, I had heard strange rumblings that other methods were being used on the other side of campus. There were rumors that people in “the humanities” actually used something called DISCUSSION. Now here was my neighbor talking about it again.

To be truthful, I had tried holding a discussion with students in my class from time to time with notable failure. Without warning, in the middle of my physiology lectures, I tried asking a few questions in moments of heroic chutzpa, but to no avail. I would ask questions like “What is the simple abbreviation for sodium?” Not a single eye met my inquiring gaze. None of the students dared look at me for fear that their gaze might be misinterpreted as being willing to speak. Pleading for an answer was beneath me, so like so many teachers before me, I started lecturing again. Only later, did I realize that even if someone had answered my sodium question, this would hardly lead to a discussion. But, my quest for different teaching methods was not to be stopped. I could not get over the fact that I, like so many of my colleagues, was giving a large percentage of F, D, and Withdrawal grades in my introductory science classes, 40% to be exact. This hardly seemed like success.

Years later, I ran into a paper discussing an experiment at Arizona State University. The chemistry department was teaching large numbers of introductory students. They had several sections of the course taught by faculty of different abilities. All of the sections had a common exam. When they compared the grades of the students in the different sections, they found to their surprise that there were no differences among the different sections regardless of the teaching reputation of the instructors! Physics teacher Richard Hake reported similar findings in his survey of 6,000 students taking introductory physics: The skill of the lecturer did not appear to make much difference in the student performance on tests. With these results, you can see why I might look for an alternate approach to teaching.
In my quest for the perfect method, I ran into work by Professor James Conant, a chemist at Harvard, who was President Franklin Delano Roosevelt’s science adviser during World War II. He returned from his experience convinced that the public did not understand the way science worked and vowed to change his teaching at Harvard as a result. He created a science course using case studies. This was a lecture course where Conant explored the discovery of great principles, such as the second law of thermodynamics. Over a series of lectures he traced the development of the idea as it came to fruition through fits and spurts, good and bad science. The course apparently did not survive him, although his lectures did make it into print.

Then I heard about McMaster University’s medical school, in Ontario, Canada. They, too, were using a case study approach to teaching. But no lectures at all! They based their entire curriculum around cases using a method called Problem-Based Learning. They put all of their students in small groups of, say, a dozen students with a faculty facilitator. Students were given a patient’s history and asked to diagnose the problem. When this was complete they received another case. And so it went—case after case, small groups learning the subject on a need-to-know basis, receiving the problem in sections.

So, here was my dilemma: In three different situations I had found people using the term case study teaching. All were enthusiastic. Yet, plainly they were doing very different things in the classroom: law professors were leading discussions; Conant was lecturing; and the medical professors were using small groups. The conclusion was obvious: The definition of case studies could not depend upon the method of instruction.

So what was the essence of case studies? I decided to make it simple. “Case studies are stories with an educational message.” That’s it. The moment that I realized this, I was suddenly free to create stories with different formats for different purposes. Moreover, when I started running workshops, many faculty who only knew of the Harvard discussion model and were dreadfully afraid of it suddenly saw that there were other excellent methods that they could capitalize on the use of stories.

What’s the magic of stories? People love stories. Stories put learning into context. Lectures often don’t do this. They are abstract with mountains of facts. Sheila Tobias, in her book They’re Not Dumb, They’re Different, described the disagreeable nature of the lecture method. She pointed out that science majors are much more tolerant of the dull recitation of facts than non-majors. Even the redoubtable Richard Feynman spoke of his frustration with science education in the preface to his Lectures in Physics saying, “I think the system is a failure.” He summarized, “The best teaching can be done only when there is a direct individual relationship between a student and a good teacher—a situation in which the student discusses the ideas, thinks about the things, and talks about the things. It is impossible to learn very much simply by sitting in lecture.”

Clearly, I agree. And several granting agencies have been willing to give me a chance to find out if the method(s) can be used to teach basic science. For this I thank them most gratefully: The U.S. Department of Education Fund for the Improvement of Postsecondary Education; The Pew Charitable Trusts; and the National Science Foundation. In addition, I thank my colleagues who have helped develop many of the ideas that form many of the essays in this collection, especially my Co-PI on several of these grants: Nancy Schiller.

Together, we have been able to establish the National Center for Case Study Teaching in Science (http://ublib.buffalo.edu/libraries/projects/cases/case.html). This center puts on workshops and conferences where we extol the virtues of case study teaching to thousands of faculty over the years. Its website has hundreds of cases and teaching notes written by faculty across the
world and has thousands of visitors each day. This is truly amazing to me and is a remarkable testimony to the fact that faculty are finally trying out different teaching methods. The case study method has come of age.

In this book I have gathered together many of the columns that I have written for the *Journal of College Science Teaching* over the years. Les Paldy, longtime editor of the journal, was kind enough to ask me to start publishing these essays a dozen years ago and indeed it was he who suggested that I put this collection together so that readers could more readily access the articles. This book is the result. I have not attempted to modify the essays themselves. They stand as they were written. As a consequence, there is some redundancy and perhaps some gaps. I have attempted to smooth over the bumps by writing commentary along the way. Also, I have asked several of my colleagues to contribute to this book by including their essays that deal with important aspects of the case study approach. Hopefully, readers will find the essays useful.

It seems fitting to put case study teaching into a larger context. There is no one better able to do this than the late Carl Sagan, whose work in astronomy and relentless search for ways to engage the public resulted in outstanding books and a television special, *Cosmos*. In his last public appearance reported in the *Skepical Inquirer* (29: 29–37, 2005), knowing he was dying of cancer, he was asked a question: “Do you have any thought on what path might be taken to remedy [the bad name of science]?”

Sagan replied,

“I think one, perhaps, is to present science as it is, as something dazzling, as something tremendously exciting, as something eliciting feelings of reverence and awe, as something that our lives depend upon. If it isn’t presented that way, if it’s presented in very dull textbook fashion, then of course people will be turned off. If the chemistry teacher is the basketball coach, if the school boards are unable to get support for the new bond issue, if teachers’ salaries, especially in the sciences, are very low, if very little is demanded of our students in terms of homework and original class time, if virtually every newspaper in the country has a daily astrology column and hardly any of them has a weekly science column, if the Sunday morning pundit shows never discuss science, if every one of the commercial television networks has somebody designated as science reporter but he (it’s always a he) never presents any science (it’s all technology and medicine), if an intelligent remark on science never has been uttered in living memory by a president of the United States, if in all of television there are no action-adventure series in which the hero or heroine is someone devoted to finding out how the universe works, if spiffy jackets attractive to the opposite sex are given to students who do well in football, basketball, and baseball but none are given in chemistry, physics, and mathematics, if we do all of that, then it is not surprising that a lot of people come out of the American educational system turned off, or having never experienced science.”

Sagan has set us a lofty goal. Case study teaching is a step in the right direction.
START WITH A STORY

The Case Study Method of Teaching College Science

By Clyde Freeman Herreid

Chapter 3

Saint Anthony and the Chicken Poop

An Essay on the Power of Storytelling in the Teaching of Science

The Garden of Eden must have been in northern New Mexico. In early Christian iconography Adam and Eve were always depicted buck-naked: no fig leaves. As anyone knows, there are no fig leaves in New Mexico—and in fact, covering one’s private parts with pine needles is painful to even contemplate—hence, the nudity of the first couple is easy to explain.

They lived in northern New Mexico, and Bethlehem is a little south of Albuquerque. With that insight, tongue in cheek, anthropologist Charles Carrillo began his New Year’s lecture in Santa Fe.

On two occasions in my life I have heard lectures that were completely structured around a series of stories. Only two! That’s quite remarkable when you consider I have lived long enough to hear literally thousands of lectures.

The first occasion was shortly after the collapse of the Soviet Union, and the country had opened its doors to tourists. There, on a ship floating down the Volga River, I heard a lecture from a Russian government

A 16th-century painting of the Virgin Mary with St. Anthony of Padua (left) and St. Roch. St. Anthony, the subject of this chapter’s “Case Study,” is known in the Catholic Church as the “finder of lost objects.”
tour guide who told us about her country through a series of stories. She believed she could best capture the spirit and essence of her homeland with tales from the past. I was not only captivated by her stories, but also intrigued by the method of conveying information. I have often reflected upon this approach to teaching.

The second occasion was right after New Year’s. I happened to be in Santa Fe, New Mexico, at a luncheon meeting. The speaker for the day was an anthropologist, Charles Carrillo. Although he had earned his PhD at the University of New Mexico, he was making his living as a santero, carving and painting icons of Christian saints.

As a Hispanic who could trace his ancestry back to the arrival of the Spanish conquistadors, he had long been impressed with the fact that anthropologists had oft analyzed Indian pottery, but the Hispanic ceramic tradition had been virtually neglected. This was a source of distress to him and ultimately led to his dissertation and the inspiration for his life as a santero. His lecture was about three unassuming pots—a bean pot, a coffee mug, and a tiny cosmetic pot. But before that he had to tell us about St. Anthony and the chicken poop.

Holding a small statuette of St. Anthony of Padua, Carrillo told us that he had discovered it was made by a santero in the early 1800s. Although apparently carved of wood, he had discovered using x-rays that only the core of the statue was made of wood and that layers of gypsum had been applied on top of the wood to build up the features of the saint. This discovery was to serve as part of his PhD thesis.

To his sorrow, the statue was missing a tiny figurine of the baby Jesus, who traditionally was held in the arms of the saint. Carrillo related how he had discovered a solitary Christ child figurine in an antique shop in California. There, lying in a forgotten corner of a doll collection, was the baby Jesus. Careful examination revealed it had come from the same santero’s workshop where his St. Anthony had been crafted. It looked like a perfect fit. Perhaps it was not the missing Jesus, but it made a nice story and became another part of his thesis.

I doubt that the chicken poop story got into his thesis. Carrillo told us that Hispanic homes invariably had saint statuettes. St. Anthony was clearly his favorite for familial reasons, if no other. His grandmother revered St. Anthony because he had figured significantly in her life.

Chili peppers are a staple of every meal in Hispanic households. Even during the Thanksgiving dinner, turkey, cranberries and pumpkin pie are garnished with green and red chilies. Many Hispanic families of New Mexico raise their own crop of garden chilies. The best are raised with a rich mixture of manure.

The recipe in Grandmother Carrillo’s time consisted of mixing a pail of chicken poop with an equal amount of cow dung and adding to that a bit of water to make a slurry. Then dried seeds of chili peppers were added. The housewife would take the concoction and, stepping through the garden, poke a hole in the ground. With three fingers she would reach into the mixture to obtain a pinch of seeds and manure.

One year as Grandma was following the ancient tradition, stooping to the earth and depositing the seed and manure mixture one step at a time, she discovered that a terrible thing had happened. She had lost her wedding ring! Somewhere in the garden the ring had slipped from her finger.

What to do? Like any God-fearing woman of the 1930s, Grandma went back to the house for her St. Anthony. Returning to the garden with the statuette in hand she implored St. Anthony to find the ring. This petition was totally appropriate, for the Roman Catholic Church depicts St. Anthony as “a finder of lost objects” and reveres him as a patron saint of
An Essay on the Power of Storytelling in the Teaching of Science

miracles. Grandma Carrillo needed a miracle for sure. She placed St. Anthony in a hole in a nearby tree overlooking the garden, admonishing him that he would not gain reentrance to the house until the ring was recovered.

There St. Anthony stayed day after day. But this year the usual dry conditions familiar to residents of the Southwest didn’t come to pass. No, this was the best growing season in memory. The rains came frequently. The chilies grew profusely. With each rain not only was the soil moistened but also water dripped steadily on St. Anthony’s head, wearing away his plaster countenance.

One day, as Grandma was tending the garden, she looked in on St. Anthony. She discovered to her dismay that the water had worn away his head. Realizing the futility of leaving St. Anthony to suffer further climatic indignities, she retrieved the statuette from the tree. After all, St. Anthony no longer had eyes to search for the ring, and “What good is a man without a brain, anyway?” she reasoned.

As she lifted St. Anthony from the tree she got the surprise of her life: There, sticking to the bottom of the statuette’s feet, was her ring. St. Anthony had indeed produced the demanded miracle! Thanks be to God. A family legend was born, one that would be told for generations of Carrilos.

What good are such stories of pots and saints?

Carrillo answered it this way: Stories are a way to connect to the past—to hold on to the memories of who we were and are. He encouraged his audience to “Go home and write about yourselves, not just your genealogy, but your personal history and where you come from.”

I have often been struck with how little scientists care about history. It is today that matters. Indeed, researchers’ publications seldom note a reference more than 10 years old. This same temporal provincialism exists in Americans collectively, for we seldom know or care much about our ancestors prior to Grandpa or Grandma. Surely, there is more to know. After all, our lineage stretches back over 3.5 billion years.

Scientists are as fond of stories as the next person. Experimentalists tell them all the time, though their stories are stilted tales of lab and field studies in journal articles of research. Those are still stories. Astronomers, paleontologists, and evolutionary biologists spin grand Homeric tales of the universe and Earth. Yet, in spite of our obvious concern that “history matters,” we seldom convey this connection to our students. Where are the stargazers, the lab workers, the diggers of fossils in our classroom lectures? A Charles Darwin or Richard Feynman gets a pat on the head, but the rest of our “artwork” is unsigned.

It is often said that the field of science is impersonal and objective. That is its strength, we are told. We scientists are out to seek and reveal “truth,” which is independent of the observers. This has led to the god-awful writing style that has permeated our journals for decades where the use of the personal pronoun “I” is shunned and the use of the passive voice praised. We scientists are to remain in the background, above the fray—as mere observers and recorders, scientific voyeurs; peeping toms, prying out nature’s secrets.

As teachers, we scientists are supposed to just deliver “the facts, ma’am, just the facts” (as Joe Friday in TV’s Dragnet was fond of saying). As a result, we have sucked the life out of science, as a student of mine recently said to me about a professor who was teaching ecology. I wouldn’t have believed it possible to do that to ecology—a field filled with wonderful tales of adventurous discoveries. But it happened because the teacher filled each lecture with non-stop equations, modeling this and that. What a shame. Now this may appeal to some types of learners, but certainly not to most. I have nothing against equations and models.
I can appreciate the argument that it is a sign of maturity when a field of science can express its principles mathematically (even though, as is in the case of ecology, most of these heuristic models have little empirical basis). But to have reduced the personas of the lynx and the snowshoe hare to nothing more than squiggles on graph paper or symbols in a Lotka-Volterra equation is indeed sucking the life out of the field.

Storytelling even in the field of science is not entirely dead. Jane Goodall and other notable field biologists (many of whom are women) studying animal behavior have chosen to present many of their findings in narrative form. The life in their science is still there—vibrant and alive. We do still see the scientist as a human being even as we can see the abstract architecture of their science. Compelling stories do that for us.

Donald McCloskey, professor of economics and history at the University of Iowa, made some interesting comments in an essay in the February 1995 issue of Scientific American. Economics has trod its own path away from the narrative style of Adam Smith to become extraordinarily mathematical and abstract. He pointed out that “the notion of ‘science’ as divorced from storytelling arose largely during the last century. Before then the word—like its French, Tamil, Turkish, and Japanese counterparts—meant ‘systematic inquiry.’ The German word for the humanities is Geistwissenschaft, or ‘inquiry into the human spirit,’ as opposed to Naturwissenschaft,” which is our inquiry into nature.

McCloskey goes on:

Most sciences do storytelling and model building. At one end of the gamut sits Newtonian physics—the Principia (1687) is essentially geometric rather than narrative. Charles Darwin’s biology in the Origin of Species (1859), in contrast, is almost entirely historical and devoid of mathematical models. Nevertheless, most scientists and economists among them hate to admit to something so childish-sounding as telling stories. They want to emulate Newton’s elegance rather than Darwin’s complexity. One suspects that the relative prestige of the two methods has more to do with age than anything else. If a proto-Darwin had published in 1687, and a neo-Newton in 1859, you can bet the prestige of storytelling versus timeless modeling would be reversed.

Storytelling in science is largely verboten. We seldom hear of the passion, emotion, or personal matters of a Newton, Einstein, Lavoisier, Lyell, or Pasteur—such things are regarded as asides or diversions from truth, the grand structure of the universe that exists separate from the observer. So, many students sit in class waiting for the suffering to be over, or they change majors to other more human-centered fields where the subjective, the individual, matters.

Some years ago, I read about someone who was asked what one thing he would most like to keep in his possession if he had to fly off to another planet to start another civilization—a copy of Newton’s Principia, Darwin’s Origin of Species, Einstein’s papers on relativity, or Shakespeare’s plays. He answered, Shakespeare’s plays. All of the other works could be regenerated. They were objective. Other scientists would duplicate them. Only Shakespeare’s plays were unique and personal.

Even if we accept that science is objective, must we suck the life out of our teaching by neglecting our roots? James Conant, chemist, science adviser to President Franklin Roosevelt, and eventually president of Harvard University, thought we must not. He responded by pioneering the use of storytelling case studies within the lecture method framework. He built an entire course around this approach that he described in his book, The Growth of the Experimental Sciences (1949).

Case study teaching, whether it is done via the lecture method, the discussion method, or small group Problem-Based Learning method, puts a
human face on science. It is not that case teachers deny the ultimate reality of the universe or refuse to accept that the universe will some day be described by a set of mathematical models. But the case study approach using stories gives us a context within which to learn.

Not only are stories captivating, they make it easier to learn and recall facts, figures, and yes, equations. Moreover, stories tell us who we are as a people—the problems we face, the values we cherish, the barriers we must surmount, whether personal or societal. They help tie us with an umbilical cord of DNA to our heritage—to those who have gone before us and to those who struggle in today’s world in ways we would not otherwise know.

So what value are pots and saints? They represent the mundane and spiritual. They can put the life back into teaching, where it was sucked dry before.
Syphilis is a venereal disease spread during sexual intercourse. It can also be passed from mother to child during pregnancy. It is caused by a corkscrew-shaped bacterium called a spirochete, *Treponema pallidum*. This microscopic organism resides in many organs of the body but causes sores or ulcers (called chancres) to appear on the skin of the penis, vagina, mouth, and occasionally in the rectum, or on the tongue, lips, or breast. During sex the bacteria leave the sores of one person and enter the moist membranes of their partner’s penis, vagina, mouth, or rectum.

Once the spirochetes wiggle inside a victim, they begin to multiply at an amazing rate. (Some bacteria have a doubling rate of 30 minutes. You may want to consider how many bacteria you might have in 12 hours if one bacterium entered your body, doubling at that rate.) The spirochetes then enter the lymph circulation that carries them to nearby lymph glands, which may swell in response to the infection.

This first stage of the disease (called primary syphilis) lasts only a few weeks and usually causes hard red sores or ulcers to develop on the genitals of the victim who can then pass the disease on to the someone else. During this primary stage, a blood test will not reveal the presence of the disease, but the bacteria can be scraped from the sores. The sores soon heal and some people may recover entirely without treatment.

Secondary syphilis develops two-to-six weeks after the sores heal. Then flulike symptoms appear with fever, headache, eye inflammation, malaise, joint pain, a skin rash, and mouth and genital sores. These symptoms are a clear sign that the spirochetes have travelled throughout the body by way of the lymph and blood systems where they now can be readily detected by a blood test (for example, the Wassermann test). Scalp hair may drop out to give a “moth-eaten” type of look to the head. This secondary stage ends in a few weeks as the sores heal.

Signs of the disease may never reappear even though the bacteria continue to live in the person. But in about 25% of those originally infected, symptoms will flare up again in late or tertiary stage syphilis.

Almost any organ can be attacked, such as the cardiovascular system, producing leaking heart valves and aneurysms, balloon-like bulges in the aorta which may burst leading to instant death. Gummy or rubbery tumors filled with spirochetes may develop on
the skin covered by a dried crust of pus. The bones may deteriorate, as in osteomyelitis or tuberculosis, and may produce disfiguring facial mutilations as nasal and palate bones are eaten away. If the nervous system is infected, a stumbling, foot-slapping gait may occur or, more severely, paralysis, senility, blindness, and insanity.

The Health Program

The cause of syphilis, the stages of the disease’s development, and the complications that can result from untreated syphilis were all known to medical science in the early 1900s. In 1905, German scientists Hoffman and Schaudinn isolated the bacterium that causes syphilis. In 1907, the Wassermann blood test was developed, enabling physicians to diagnose the disease. Three years later, German scientist Paul Ehrlich created an arsenic compound called salvarsan to treat syphilis. Together with mercury, it was either injected or rubbed onto the skin and often produced serious and occasionally fatal reactions in patients. Treatment was painful and usually required more than a year to complete.

In 1908, Congress established the Division of Venereal Diseases in the U.S. Public Health Service. Within a year, 44 states had organized separate bureaus for venereal disease control. Unfortunately, free treatment clinics operated only in urban areas for many years. Data, collected in a survey begun in 1926 of 25 communities across the United States, indicated that the incidence of syphilis among patients under observation was “4.05 cases per 1,000 population, the rate for whites being 4 per 1,000, and that for Negros 7.2 per 1,000.”

In 1929, Dr. Hugh S. Cumming, the Surgeon General of the U.S. Public Health Service (PHS), asked the Julius Rosenwald Fund for financial support to study the control of venereal disease in the rural South. The Rosenwald Fund was a philanthropic organization that played a key role in promoting the welfare of African Americans. The fund agreed to help the U.S. PHS in developing health programs for southern African Americans.

One of the fund’s major goals was to encourage their grantees to use black personnel whenever possible as a means to promote professional integration. Thus, the mission of the fund seemed to fit well with the plans of the PHS. Macon County, Alabama, was selected as one of five syphilis-control demonstration programs in February 1930. The local Tuskegee Institute endorsed the program. The institute and its John A. Andrew Memorial Hospital were staffed and administered entirely by African American physicians and nurses. “The demonstrations would provide training for private physicians, white and colored, in the elements of venereal disease treatments and the more extensive distribution of antisyphilitic drugs and the promotion of wider use of state diagnostic laboratory facilities.”

In 1930, Macon County had 27,000 residents, 82% African American, most living in rural poverty in a shack with a dirt floor, with no plumbing and poor sanitation. This was the target population, people who “had never in their lives been treated by a doctor.” Public health officials arriving on the scene announced they had come to test people for “bad blood.” The term included a host of maladies and later surveys suggest that few people connected that term with syphilis.

The syphilis control study in Macon County turned up the alarming news that 36% of the African American population had syphilis. The medical director of the Rosenwald Fund was concerned about the racial implications of the findings, saying, “There is bound to be danger that the impression will be given that syphilis in the South is a Negro problem rather than one of both races.” The PHS officer assured the fund and the Tuskegee Institute that demonstrations would not be used to attack the images of black Americans. He argued that the high syphilis rates were not due to “inherent racial susceptibility” but could be explained by “differences in their respective
social and economic status.” However, the PHS failed to persuade the fund that more work could break the cycle of poverty and disease in Macon County. So when the PHS officers suggested a larger scale extension of the work, the Rosenwald Fund trustees voted against the new project.

Building on what had been learned during the Rosenwald Fund demonstrations and the four other sites, the PHS covered the nation with the Wassermann tests. Both blacks and whites were reached with extensive testing, and in some areas mobile treatment clinics were available.

The Experiment
As the PHS officers analyzed the data for the final Rosenwald Fund report in September of 1932, and realizing that funding for the project would be discontinued, the idea for a new study evolved into the Tuskegee Study of Untreated Syphilis in the Negro Male. They would convert the original treatment program into a nontherapeutic human experiment aimed at compiling data on the progression of the disease on untreated African American males.

The precedent existed for such a study. One had been conducted in Oslo, Norway, at the turn of the century on a population of white males and females. An impressive amount of information had been gathered from these patients concerning the progression of the disease. However, questions of manifestation and progression of syphilis in individuals of African descent had not been studied. In light of the discovery that African natives had some rather unique diseases (for example, sickle cell anemia—a disease of red blood cells), a study of African males could reveal biological differences during the course of syphilis. (Later, the argument that supported continuation of the study may even have been reinforced in the early 1950s when it was suggested that native Africans with the sickle cell trait were less susceptible to the ravages of malaria.)

In fact, Dr. Joseph Earle Moore of the Venereal Disease Clinic of the Johns Hopkins University School of Medicine stated when consulted, “Syphilis in the negro is in many respects almost a different disease from syphilis in the white.” The PHS doctors felt that this study would emphasize and delineate these differences. Moreover, whereas the Oslo study was retrospective (looking back at old cases), the Macon Study would be a better prospective study, following the progress of the disease through time.

It was estimated that of the 1,400 patients in Macon County admitted to treatment under the Rosenwald Fund, not one had received the full course of medication prescribed as standard therapy for syphilis. The PHS officials decided that these men could be considered untreated because they had not received enough treatment to cure them. In the county, there was a well-equipped teaching hospital (John A. Andrew Memorial Hospital at the Tuskegee Institute) that could be used for scientific purposes.

Over the next months in 1932, cooperation was ensured from the Alabama State Board of Health, the Macon County Health Department, and the Tuskegee Institute. However, Dr. J. N. Baker, the state health officer, received one important concession in exchange for his approval. Everyone found to have syphilis would have to be treated. Although this would not cure them—the nine-month study was too short—it would keep them noninfectious. Dr. Baker also argued for the involvement of local physicians.

Dr. Raymond Vonderlehr was chosen for the fieldwork that began in October 1932. Dr. Vonderlehr began his work in Alabama by spreading the word that a new syphilis control demonstration was beginning and that government doctors were giving free blood tests. Black people came to schoolhouses and churches for examination—most had never before seen a doctor. Several hundred men over 25 years old were identified as Wasser-
mann-positive who had not been treated for “bad blood” and had been infected for over five years. Cardiovascular problems seemed particularly evident in this population in the early days, reaffirming that blacks might be different in their response. But nervous system involvement was not evident.

As Dr. Vonderlehr approached the end of his few months of study, he suggested to his superior, Dr. Clark, that the work continue for 5–10 years because “many interesting facts could be learned regarding the course and complications of untreated syphilis.” Dr. Clark retired a few months later and in June 1933 Dr. Vonderlehr was promoted to director of the Division of Venereal Diseases of the PHS.

This promotion began a bureaucratic pattern over the next four decades that saw the position of director go to a physician who had worked on the Tuskegee Study. Dr. Vonderlehr spent much of the summer of 1933 working out the study’s logistics that would enable the PHS to follow the men’s health through their lifetime. This included gaining permission from the men and their families to perform an autopsy at the time of their death that would give the scientific community a detailed microscopic description of the diseased organs.

Neither the syphilitics nor the controls (those men free of syphilis, who were added to the project) were informed as to the study’s true objective. These men knew only that they were receiving treatment for “bad blood” and money for burial. Burial stipends began in 1935, funded by the Milbank Memorial Fund.

The skill of the African American nurse, Eunice Rivers, and the cooperation of the local health providers (most of them white males), were essential in this project. They understood the project details and the fact that the patients’ available medical care (other than valid treatment for syphilis) was far better than that for most African Americans in Macon County. The local draft board agreed to exclude the men in the study from medical treatment when that became an issue during the early 1940s. State health officials also cooperated.

The study was not kept secret from the national medical community. Dr. Vonderlehr in 1933 contacted a large number of experts in the field of venereal disease and related medical complications. Most responded with support for the study. The American Heart Association asked for clarification of the scientific validity, then subsequently expressed great doubt and criticism concerning the tests and procedures. Dr. Vonderlehr remained convinced that the study was valid and would prove that syphilis affected African Americans differently than those of European descent.

As director of the PHS Venereal Disease Division, he controlled the funds necessary to conduct the study, as did his successors.

Key to the cooperation of the men in the Tuskegee study was the African American PHS nurse assigned to monitor them. She quickly gained their trust. She dealt with their problems. The physicians came to respect her ability to deal with the men. She not only attempted to keep the men in the study, she many times prevented them from receiving medical care from the PHS treatment clinics offering neoarsphenamine and bismuth (the treatment for syphilis) during the late 1930s and early 1940s. She never advocated treating the men. She knew these treatment drugs had side effects. As a nurse, she had been trained to follow doctor’s orders. By the time penicillin became available for the treatment of syphilis, not treating these men had become a routine that she did not question. She truly felt that these men were better off because of the routine medical examinations, distribution of aspirin pink pills that relieved aches and pains, and personal nursing care. She never thought of the men as victims. She was aware of the Oslo study. “This is the way I saw it: that they were studying the Negro just like they were studying the white man, see, making a com-
A Case Study of the Tuskegee Syphilis Project

1. Carefully analyze this case. When you...
examine the paper and the appendices, what information appears to have been gained from this study? That is, what kind of argument can be made for the benefits of the study?

2. What do you believe were the motives for the people to become involved in the study, specifically: The subjects? The PHS personnel? The Tuskegee staff? The Macon County physicians? Nurse Rivers?

3. What kind of criticisms can you offer of this study?

4. What were the factors underlying the cessation of the project?

5. Could this project (or one similar to it involving AIDS or radiation effects) be conducted today?

Teaching the Case

This case seems ideally suited for the classical case discussion format used for decades in business schools, although it can easily be adapted for small group cooperative learning teams.

It is divided into three parts: the disease, the public health program, and the experiment.

- The section on the disease is a straightforward account of the symptoms of syphilis, and it normally figures only in a modest way in the discussion except as a backdrop to the case. The instructor can highlight the disease by an early focus on the disease symptoms, perhaps with graphic photos and review of included data and readings from original papers.

- The section on the public health program should be viewed from the perspective of concern regarding the extent of disease in rural southern America, the need to establish a health vehicle to address the problems of disease, and the concern of an expanding civil rights movement regarding health care and health care professionals.

- The section on the experiment itself leads to several lines of inquiry that should be pursued in discussion.
 1. Rationale for loss of funds.
 2. Rationale for study on untreated African American males and societal acceptance of such experimentations.
3. The medical importance of longitudinal studies.
4. Rationale for continuing study after penicillin was discovered.
5. The use or inappropriate use of "control" groups.
6. The meaning of “informed consent.” That is, can you ever be fully informed?
7. What is the Nuremberg Code and does it really pertain to this study?
8. Of what use are the data collected from this study? Do there appear to be any significant conclusions? Review the contamination aspect of various degrees of treatment.
9. Can scientists become so intimately associated with their projects that they lose objectivity?
10. Why was the consistent care provided by one person throughout the study so necessary?

There are a myriad of other questions that the discussion could develop by reading the case study. If small groups are used, these questions and others can be divided among them to provide different perspectives on the case. These views would be shared in a general group discussion. However, our remaining comments about teaching will emphasize the group discussion technique.

In writing this case we have kept the account relatively straightforward, eschewing emotion-laden phrases, keeping in mind the science and ethics earlier in the century. It has a documentary feel to it; that is intentional. As a result, we hope to accomplish two things: (1) To keep the reader focussed on the science first; and (2) To avoid the easy criticism that comes from second guessing events that took place over 50 years ago. It helps to dampen the tendency of some individuals to use this case as a platform to denile racism without serious analysis. There is always a risk of polemics when we deal with scientific cases that im-

A Case Study of the Tuskegee Syphilis Project

TABLE 1.
1963 Viability data of Tuskegee group.

<table>
<thead>
<tr>
<th></th>
<th>Dead</th>
<th>Alive</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>%</td>
<td>number</td>
</tr>
<tr>
<td>Syphilitics</td>
<td>242</td>
<td>59</td>
<td>85</td>
</tr>
<tr>
<td>Controls</td>
<td>78</td>
<td>45</td>
<td>66</td>
</tr>
</tbody>
</table>

From Rockwell, Yobs, and Moore (1964)

TABLE 2.
Abnormal findings in 90 syphilitics and 65 controls.

<table>
<thead>
<tr>
<th>Abnormality</th>
<th>Syphilitics</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>%</td>
</tr>
<tr>
<td>Electrocardiographic</td>
<td>41</td>
<td>46</td>
</tr>
<tr>
<td>Cardiomegaly via x-ray</td>
<td>37</td>
<td>42</td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>Hypertension d.b.p.>90</td>
<td>38</td>
<td>43</td>
</tr>
<tr>
<td>Cardiac murmurs</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Urine</td>
<td>28</td>
<td>36</td>
</tr>
</tbody>
</table>

From Rockwell, Yobs, and Moore (1964)

TABLE 3.
Aortic arch and myocardial abnormalities at autopsy.

<table>
<thead>
<tr>
<th></th>
<th>Aortic arch</th>
<th>Myocardial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>number</td>
<td>%</td>
</tr>
<tr>
<td>Syphilitics</td>
<td>(140)</td>
<td>62</td>
</tr>
<tr>
<td>Controls</td>
<td>(54)</td>
<td>8</td>
</tr>
</tbody>
</table>

X2P<0.005 X2P>0.25 not different

From Caldwell et al. (1973)
pinge on the public welfare. These moments are seldom enlightening. Careful preparation on the part of the instructor can help head off such events.

Blocks of Analysis

Every case has its major points for discussion; these vary with the teacher and audience. In this instance, we have identified three major issues for analysis: the science; the ethics of human experimentation; and the racial issue. We choose to start with the least volatile of the issues just as we would in the classroom.

The Science

Basically, was this good science? Questions that illuminate this issue include: What was the purpose of the project? How did the purpose shift through time? Was the experimental design adequate? What were the contributions of the study? On one side of the argument we have the view that many of the so-called untreated men were in fact treated and this invalidated all conclusions that might be drawn. Furthermore, one might argue that there was no need to repeat a study on untreated people since the Oslo data were adequate.

Clearly, physicians involved with the project did not agree, for they thought it likely the black population might differ, especially in their cardiovascular and neurological response to syphilis. Also, we have statements that the blood from these men was used to develop standardized blood tests, that the project served as a training ground for many PHS and other medical staff, and that the project led to several scientific publications. The Tuskegee data still serve as the reference for understanding syphilis.

Ethics of Human Experimentation

Our view of human experimentation has changed markedly over the past century. There are numerous examples of soldiers, prisoners, and citizens who have unwillingly or unknowingly participated in life-threatening “experiments” (Barber 1976). The 1993 revelation that Americans were unwillingly exposed to potentially harmful doses of nuclear radiation during tests of the 1940s and 1950s is only the most recent example.

Historically, one might think that development of the Nuremberg Code would have prevented such work. This does not seem to be the case. The notorious Nazi medical experiments, which were brought to light after World War II during the war crimes trials, led to the development of a code of ethics called the Nuremberg Code. This set of 10 principles asserts “the subjects’ right to decide whether or not to become research subjects.” It defines what physicians may or may not do even with the permission of the subject. An investigator must take all precautions to avoid the remote possibility of injury, and the degree of risk involved to the subject must be commensurate with the “humanitarian importance of the problem.” In spite of the widespread publicity of the Nuremberg trials there appears to be no suggestion that any of the physicians in the Tuskegee syphilis experiment thought the Nuremberg Code applied to them. Nor for that matter has it appeared to have had any impact on the development of our own ethical framework in the United States (Annas and Grodin 1992).

Not until the thalidomide scandal of the 1960s did the U.S. scientific community seriously engage on the question of human experimentation. Only in the past few years have we seen universities and the National Institutes of Health establish guides for human experimentation.

How much of this checkered past needs to be part of the discussion is up to the instructor, but it might be useful to give students your school’s or a local drug company’s guidelines on human experimentation or ask them to develop their own principles. Certainly, any discussion on these issues will include the “right” of people to choose whether they will be part of an experiment. Also, there will be questions
of whether it is possible to truly inform a person about the consequences of an experiment and whether this knowledge will influence the results of the work itself. Lawsuits have been won on the basis that even if a person signs a release, he or she cannot be held accountable; he or she may be acting under coercion or stress and without proper understanding of the work. For example, how much would you accept as adequate compensation in such an experiment: $5, $50, $500, $5,000?

The Racial Issue
This is potentially the most volatile issue in the case. If terms such as genocide can be applied to the AIDS crisis, so might they be applied to the syphilis epidemic and the Tuskegee study. Here is a documented case of a government agency withholding medical treatment from an ethnic minority.

If an instructor wishes to explore this issue, he or she would presumably focus on how it is possible to view the same event from different perspectives. There is evidence that the Rosenwald Fund had a long history of helping black Americans and one of its concerns about funding the second phase of the Tuskegee project was that its motives could be misconstrued. Furthermore, there is documented evidence that the prime motive for early work was to see if the progress of syphilis in the black male was similar to that first studied in the European male in Oslo. Also, we have clear cooperation of black physicians, nurses, and administrators of Macon County and the Tuskegee Institute. Yet evidence of this type can be viewed through another lens. The perspective of a person arguing the genocide scenario is captured simply with this question: Would this study have occurred (especially once penicillin was discovered) if it involved white middle-class Americans as subjects? Speculation will not provide sure answers, yet the recent revelation that such citizens have been exposed to life-threatening radiation by our government is worth considering as a model.

For instructors using the small group approach to teaching, these issues can be assigned to separate groups to discuss. Also, it is helpful to assign one group to take the affirmative side of the issue and another group to take the negative side.

The First Question
The opening question to the class is one of the most critical features of case teaching. It determines the entry point into the case, and if one chooses the wrong question or wrong person to respond, the instructor may have difficulty getting back on track. Your question will depend upon your goals in teaching the particular case. Nonetheless, good opening questions share several characteristics in that they:

1. Encourage participation.
2. Move toward a specific goal.
3. Set up a discussion of the facts.
4. Elicit different perceptions of the case.
5. Help formulate (define) a problem.

Consider three examples of questions for the Tuskegee case:

1. Some people have argued that there are racial overtones in this project, yet Eunice Rivers, a black nurse, was an important participant in the experiment. Are these two points of view compatible? This question will likely catapult the class squarely into the racial issue. It meets many of the goals of a good opening question, but it will probably not suit the tastes of most scientists as the best entry point into the discussion.

2. As we look at this study, one cannot help but wonder if it was ethical, given that the men were simply informed that the doctors were studying “bad blood.” How important is it to have informed consent? This question launches the class into the ethics of human experimentation and once again meets many of the qualifications of a good opening question, but if the scien-
If scientific data are of prime concern, the next question may be better.

(3) The Tuskegee experiment has been criticized because its experimental design was inherently flawed. Is that really so? And even if it is true that the study was not ideal, were there valuable results to emerge from this 40-year study? This question, although less exciting than the previous two, starts the class on an exploration of the scientific issues and facts of the case. Below we have identified some of the questions that might be addressed under each issue.

Blackboard Work

Practitioners of the Case Study Discussion almost invariably make extensive use of the blackboard or flip charts. This provides a tangible structure to the discussion. If instructors do not use the board, they are throwing away one of their most important tools in teaching. Discussion has the inherent problem that it often seems aimless. Good board work provides students with a sense that something valuable is being accomplished. When the instructor writes a brief phrase on the board summarizing a student’s thoughts, he or she shows that he or she values this contribution to the discussion. This encourages other students to participate, especially if the instructor is able to use the student’s name. For instance, the teacher might comment: "If I understand Kimberly’s point correctly, she is arguing that we do not have an adequate control population to make the claim that the men actually suffered in this study. She’s arguing that men not in the study in any way probably had much poorer health than either the experimental subjects or the official controls." As this point is summarized, the instructor might note on the board "Inadequate control for claim that men suffered in study," perhaps even jotting Kimberly’s name or initials next to the writing.

The final board outline is seldom neat and tidy; rather it has phrases, arrows, circles, and lines connecting ideas from different parts in the discussion. Yet a clear pattern should emerge leaving students with a sense of "Look what we have accomplished!" To bring about order out of the emerging discussion is part of the art of case study. It not only requires practice but it requires preparation. In the current case it is logical to arrange the board around the major issues. For example if the instructor were to begin the discussion with the science issue, he or she might label it as such on the left side of the board, jotting down notes and phrases as they are developed. When other ideas pop up, the instructor might momentarily move over to other places on the board to write down these ideas, only to return to the science issue later. The teacher might set up the center of the board to develop the human experimentation theme, adding notes to other places on the board as they appear appropriate. The instructor might then shift to the right hand side of the board to develop the racial issue, making connections with previous points by moving back and forth among the issues as neglected points emerge. Thus the board has given structure to the discussion regardless of how freewheeling it might have been.

Closure

How to finish a class discussion has different answers. Some case teachers simply stop when class time runs out. They feel no obligation to give their perspective on the discussion. "Life is messy," they argue. "There are no simple solutions. It is counterproductive to the development of higher-level critical thinking to give an instructor-biased viewpoint."

Other case teachers seriously disagree. Instead, they recognize the value of a good two- or three-minute summary of the class’s discussion, and some instructors turn to the students themselves for assistance, asking one or two bold souls to wrap it up. A summary,
Suggested Question Outline

A. THE SCIENCE
1. What kind of disease is syphilis?

2. What did we know about the disease in 1930?

3. What was the original purpose of the study? Was the goal accomplished?

4. How did the goals of the project change over time?

5. What was the logic behind the choice of subjects?

6. What kinds of data were collected in the project and what conclusions resulted from the work?

7. What kind of scientific criticisms of the research can we offer?

5. Are there circumstances that you could imagine where informed consent would interfere with an experiment?

6. Are there any circumstances where the overall good of an experiment to society overrides the harm done to a small group?

B. HUMAN EXPERIMENTATION
1. What benefits did the men gain from the experiment?

2. What evidence do we have that the men were harmed by their participation in the project?

3. Was it possible to inform the men about the true goals of the experiment, given their educational status?

4. Given that men who participated in this study received health benefits, status, attention, and money, could they reasonably be expected to exercise good judgment about their participation in this project?

C. THE RACIAL ISSUE
1. What evidence do we have that race might have been a factor in the experiment?

2. What motivated the PHS investigators to choose Macon County as one of its study sites?

3. What differences were present in the experimental designs of the Tuskegee and Oslo studies?

4. If the Tuskegee and Oslo studies had shown racial differences, how would that information have been used?

5. Is it reasonable to conclude that the administrators of the Rosenwald Fund failed to fund the second PHS project because they identified racial bias in the work?

6. Is there any way to fund research on special groups in the U.S. population without running the risk of being accused of bias?

7. Given that certain segments of the population have special health problems, is there any way not to fund research on these groups without running the risk of being accused of bias?
of course, does not imply that you have solved the problems, it merely identifies some of the signposts along the way.

References
Index

Page numbers in boldface type refer to tables and figures.

A
Accountability, in cooperative learning groups, 128, 143
Active learning strategies, 205, 221, 222, 301, 421
superiority over lecture method, 402–403
Advanced Placement (AP) exams, 4
Advising freshman case study, 295–298
classroom management of, 295–297
outcome of, 297–298
purpose of, 295
student profiles and issues for, 296, 297
Aesop, 1, 438
AIDS, 372
clicker case on viral replication, 225
Duesberg phenomenon and, 157–160
Alien evolution futuristic case study, 253–263
background on, 253–254
discussion questions for, 256–257
role-playing characters for, 257–263
situation of, 254–255
teaching notes for, 257
Allen, B., 333, 334
Allen, D., 144, 154
Allington, R., 409
Alzheimer’s disease, 352, 385
Amar, M. B., 184
American Association for Higher Education, 41
American Association for the Advancement
of Science, 8, 29, 429
Project 2061, 8, 29, 429
Science for All Americans, 29
American Civil Liberties Union, 183
American Educator, 4
American Federation of Teachers, 4
American Geophysical Union, 164
American Heart Association, 102
American Museum of Natural History, 7
Analysis cases. See Appraisal (analysis) cases
Andersen, H., 4
Andromeda Strain, The, 85
Angelo, T. A., 77, 341, 405
Animal rights dilemma case, 111–118
applications of, 116
blackboard work for, 117, 117
blocks of analysis for, 114–116
closure of, 117–118
opening question for discussion of, 116–117
student objection to dissection labs, 112–113
Anna Karenina, 368
Appraisal (analysis) cases, 33, 83
questions asked by, 83
sample journal article on breast cancer and insurance coverage, 90–98, 95–97
teaching of, 83
Aristotle, 365
Armstrong, L., 87, 372, 388
Art of Readable Writing, The, 365
Ashe, A., 372
Asimov, I., 430
Assessment of case-based teaching, 401–403, 407–411, 413–418, 415
classroom-based experiments for, 408–409
discussion of, 408–409
example of good study, 410
future questions for, 417–418
internal validity criteria for, 409
research design for, 408, 408, 409–410
coplas de ciego, 405–406
teaching of, 408
how and what should be measured, 410–411, 413–414
how not to do a study, 414–416
principles of, 408
purpose of, 407–408
“reactive,” 413
research questions for, 408, 409
self-report bias in, 414–415
using grade comparisons for, 415
using too weak or too brief interventions in, 415–416
what is known from, 416–417
Astaire, F., 434
Astin, A. A., 8
Atlantic salmon controversy, student paper on, 237, 247–250
Avogadro, A., 352

B
Bacon, F., 85
Bad Blood: The Tuskegee Syphilis Experiment, 104
Baker, J. N., 101
Balanchine, G., 387
Barrows, H. S., 36
Beak of the Finch, The, 280, 358
Beecher, L., 181
Bell Curve, The, 10
Bennett, J., 46
Benveniste, J., 32
Berliner, D. C., 408
Bernard, C., 430
Bible stories, 1, 55, 68
Bieron, J., 352, 353
Billions and Billions, 365
Blackboard work for cases, 344–345, 390
Blattner, W., 158
Blocks of analysis for cases, 389
Bloom, B. S., 31, 91, 224
Bogart, H., 434
Bonk, J., 339, 341
Boyle, R., 181
Brailowsky, S., 269
Brain Repair, 269
Breast cancer and insurance coverage case study, 90–98, 95–97
Brickman, P., 225
Brighton Rock, 368
Bringing Problem-Based Learning to Higher Education: Theory and Practice, 151
Burdick, D., 361, 362
Bush, G. H. W., 8
Business cases, 42–43, 49–52, 57, 83
definition of, 50
requirements for, 50–51
selling of, 50, 51
structure of, 51, 51
teaching of, 50–51
Buxtin, P., 103

C
Cambrian Explosion, 255–256
Cannabinoids. See Marijuana
Capuana, J., 67
Carbon dioxide emissions, 162, 162, 164–166
Careers in science, 5
Carillo, C., 19–21
Carnegie, D., 68
Carroll, L., 156
Case(s)
- based on journal articles, 89–98, 349, 353
- based on newspaper articles, 351–353
- based on novels, 85–87, 349
- based on television news programs, 353
- blackboard work for, 344–345, 390
- characteristics of a good case, 45–48, 356
- clicker, 224–225, 227–234
- closed- and open-ended, 43, 375–379,
 376–378
closure of, 390–391
- conflict provoked by, 46
- contemporary, 46, 83
coplas de ciego, 405–406
decision forced by, 46
definitions of, 27, 41, 43, 50
educational objectives of, 376–377,
 388–389
- empathy created by, 46
- factual vs. fictional, 371–374
- first-person oral narratives, 148
- futuristic, 253–263
general applicability of, 46–47
generic, 373
goals of, 84
- historical, 83
- how much information to include in,
 361–364
- interactive, 441
- interest of, 46
- length of, 47, 389
- pedagogic utility of, 46

450
of the Case Study Method of Teaching College Science

Copyright © 2007 by the National Science Teachers Association.
student acceptance of, 30, 401–402
student product creation in, 347, 397
to teach critical thinking, 63–66
Team-Based Learning method, 37–38, 57–59, 129, 132, 187, 189–193, 195–203 (See also Team-Based Learning)
in dental education, 205–210, 207, 209
extinction of woolly mammoth, 211–218
types of cases for, 32–33
workshops on, 15, 147–150
Case Workbook in Human Genetics, 33
Cell division directed case study, 319–330, 321, 322, 325–327
questions for, 323, 329–330
Chakravarthy, B., 46
Change, 34, 190
Charles Darwin Research Station, 272, 273, 275, 276, 358
Chat rooms, 430
Cheating case study, 47–48
rational stereotyping and, 381–383
Chemical & Engineering News, 339
Christensen, C. R., 43
Chromosomes and mutations, 320–330
Churchill, W., 11, 11, 13
Clark, D. J., 77
Classroom Assessment Techniques, 77, 341
Classroom management of cases, 389–391
Classroom response systems. See Clickers in the classroom
Classrooms
seating arrangement in, 346
of today, 430
virtual, 431
Clickers in the classroom, 219, 221–225, 228
applications of, 223
for case study teaching, 224–225
Druid Dracula case on DNA fingerprinting, 227–234, 230–232
cost of, 224
disadvantages of, 224
faculty training for use of, 224
future of, 224
learning theories and, 223
standardization of, 224
Clickers in the Classroom: How to Enhance Science Teaching Using Classroom Response Systems, 223
Cliff, W. H., 402
Clinton, B., 33, 46, 243, 285, 432
Clinton, H., 367
Cloning, human, dialogue on, 241–245
Closed-ended case design, 375–379
benefits and applications of, 377–378
building pedagogically rich cases, 378–379
educational objectives of, 376–377
features of, 376
focus on content, 376
pedagogical properties of, 377
spectrum of case study architecture, 378
Closure of cases, 390–391
Cold fusion, 38, 46, 89, 199, 333
Cole, S., 43
Coleridge, S. T., 181
Collaborative learning, 424. See also Cooperative learning
Committee on Scientific Principles for Education Research, 408
Computer-assisted learning, 430–435
benchmarks from present to 2061, 431–432
future of computers, 431–432
virtual classrooms and distance learning, 431
virtual reality, 433–434
implications for teaching, 434–435, 440–441
Conant, J. B., xiv, 12, 22, 29–30, 42, 43, 51, 56, 156, 340
ConcepTests, 222
Conceptual learning, 416–417
Conflict provoked by cases, 46
Constructive controversy, 150
Contemporary cases, 46, 83
Cooper, J., 135
Cooperative learning, 13, 37–38, 47, 125, 127–136, 142–146

Copyright © 2007 by the National Science Teachers Association.
benefits of, 127–128, 129, 142–143, 145
improved class attendance, 134
for racial minority students, 125, 128
for women, 128
case study teaching for, 57–59, 58, 131, 135, 138, 144
class size for, 132, 133, 135
classroom initiation of, 71–74
coverage of course content by, 131–132, 145, 187
definition of, 128
dilemma case on teaching using, 423–427
elements of, 128–129, 143–144
face-to-face interaction, 128, 143
group processing, 129, 144
individual and group accountability, 128, 143
interpersonal skills, 128–129, 133, 143–144
positive interdependence, 128, 143
grading of, 71, 130–131, 134, 139, 145
peer evaluation, 134, 140, 398
groups for, 72–74
communication and trust within, 72–74
formation of, 72
problems within, 137–140, 200
meta-analysis of, 127, 133
obstacles to implementation of, 130–135, 196
for administrators, 133
for faculty, 130–132
overcoming barriers, 133–135
for students, 132–133
peer evaluation of, 134, 140
preparing lessons for, 131, 134–135
Problem-Based Learning format for, 151–156
sequence of activities for, 145
skills for implementation of, 130, 134
strategies for, 129
cooperative base groups, 129
formal groups, 129
informal groups, 129
student evaluations of, 132, 135
syllabus for, 71–72
Cooperative Learning and College Teaching Newsletter, 135
Copyright laws, 371
Correspondence courses, 431
Cosmos, xv, 365
Creationism, 273
Crichton, M., 7, 32, 85–87, 245, 349
Crick, F., 372
Critical thinking, 30–31, 89, 144, 199
case studies for teaching of, 63–66
definitions of, 63
discipline-specific, 64
measurement of, 416–417
skepticism and, 64–65
skills required for structured controversy, 286
Cross, K. P., 77, 341, 405
Cultural biases, 10
racial stereotyping in case studies, 381–383
Cumming, H. S., 100
Curie, M., 371, 372
Curriculum reform, 76
D
Dali, S., 333
Darwin, C., 21, 22, 171, 272, 273, 275, 279, 280, 357, 358
Darwin Foundation, 278
DDT ban and malaria, 353
de Mille, A., 387
Debate format, 34, 57
alien evolution futuristic case study, 257–263
DNA fingerprinting in forensic medicine case study, 285–294
intimate debate, 149–150, 179
legalization of medicinal marijuana, 181–186
Decision cases. See Dilemma (decision) cases
Decision Cases for Agriculture, 33
Definitions of a case, 27, 41, 43, 50
Dental education, team learning in, 205–210, 207, 209, 402
Dialogue(s), 239–245
on controversial topics, 240
definition of, 240
evaluation as teaching method, 240
history of, 240
on human cloning, 237, 241–245
incomplete, 240–241
techniques for use of, 240–241
unfinished, 240
use in writing cases, 367
used as traditional cases, 241
Dickman, A., 403

Dilemma (decision) cases, 32–33, 46, 83
in business, 50, 57
debating existence of life on Mars, 119–124
dissection labs and animal rights, 111–118
questions asked by, 83
in research on teaching, 423–427
objectives of, 424
research issues in, 426–427
seminar management for, 424–425
teaching issues in, 425–426
teaching notes for, 424
teaching of, 83
Dinan, F. J., 57, 131, 145, 189, 196, 349, 402
Directed case method, 299, 301–305
for content-rich courses, 299, 301, 305
definition of, 299, 301
in medical education, 301–305
mitosis and meiosis, 319–330
pedigrees and genetic disorders, 313–317
story on eukaryotic cell origin, 307–312
student assessment of, 402
Discussion format, 33–34, 83–84, 143
closure of, 84
learning students’ names for, 67–69, 345
opening question for, 84
types of cases for, 83
debating existence of life on Mars, 119–124
dilemma case on animal rights and dissection labs, 111–118
global warming case, 161–166
journal articles as appraisal cases, 89–98, 349, 353
novels, 85–87
whole class discussion, 83–84
grading of, 396–397
in structured controversy on DNA fingerprinting in courts, 293–294
Dissection labs. See also Animal rights dilemma case
educational value of, 114
student objection to, 112–113
Distance learning, 430–431
Dixon, J., 430
DNA computers, 432
DNA fingerprinting, 12, 423
Druid Dracula clicker case, 227–234, 230–232
Galapagos Islands case study, 273, 275
probability theory and, 293
structured controversy on use in forensic medicine, 287–294, 293
blocks of analysis for, 292–293
classroom management of, 293–294
student assignment for, 288–291
teaching notes for, 292
uses of, 293
DNA technology, 7, 12, 32, 89, 285
Dole, B., 285
Down syndrome, 320, 329
Dreams of Reason, The, 6
Dropout rate of science students, 1, 4–5, 128
Drug Policy Alliance, 183, 184
background of, 228–229
classroom management of, 229
DNA fingerprinting techniques, 229, 232–233
DNA structure and PCR, 229, 232–233
learning objectives of, 229
pre-assessment clicker questions for, 232
wrap-up of, 234
Duch, B., 144
Duesberg, P., 157–160
Duncan, D., 221, 223

E
Eadie, J., 172
Eakin, R., 57
Economic status of United States, 1, 4, 29, 128
Ediacaran Period, 255
Educational objectives of cases, 376–377, 388–389
Ehrlich, P., 100
Einstein, A., 22, 243, 435
El Niño climate shifts, 272, 274–275, 358
Elders, J., 183
Electronic bulletin boards, 430
Elements of Argumentation, 287
Empathy, 46
Emperor Wears No Clothes, The, 183
Endangered species
Atlantic salmon, 247–250
Galapagos Island tortoises, 275–276
Endangered Species Act (ESA), 237, 247–250
Environmental Protection Agency, 164, 165
Equations, 21–22
Erskine, J. A., 30, 49, 362
Estes, C. P., 45
Ethical issues
genetic engineering, 292–293
human cloning, 241–243
human experimentation, 103, 104, 106–107
human tissue transplantation, 267
press conference held before data publication, 122–123
Eukaryotic cell origin story, 307–312
classroom management of, 309
objectives of, 309
questions for, 309
answers to, 309–312
teaching notes for, 309
Evolution, 7, 32, 171
alien evolution futuristic case study, 253–263
Endangered Species Act and, 248
extinction case study, 211–218
Galapagos Islands as natural laboratory for study of, 271–283
human cloning and, 244
Expert witnesses, 149
Explosion of scientific information, 10–11
Extinction case study, 211–218
background of, 211–212
blocks of analysis for, 215–216
mammoths, 215
Neanderthals, 215–216
classroom management of, 217–218
evolution and extinction, 212–214
objectives of, 214–215
teaching notes for, 214
Extraterrestrial life. See Mars, case study of existence of life on

F
Factual vs. fictional cases, 371–374
copyright laws and, 371
fictionalizing a true story, 372–373
generic cases, 373
libel and consent for use of real cases, 372–373
naming names in, 373
pure fantasy, 373–374
Faculty development, using students as critics in, 75–82
benefits of, 82
faculty feedback on, 80–81
outcome of workshop on, 81–82
student feedback on, 78–80
Family stories, 20–21
Far Side, 32
Feedback pedagogy, 222. See also Clickers in the classroom
Feltovich, P. J., 36
Feminism, 10
Fetal tissue transplantation, 266–267
Feynman, R., xiv, 21
Fictionalizing a true story, 372–373
Fink, L. D., 189
First-person oral narratives, 148
Fleishman, M., 38, 199, 333
Flemming, A., 333
Flesch, R., 365–369
Formats for case teaching, 33–38, 55–59. See also specific formats
debate, 34, 57, 149–150
discussion, 33–34, 57, 58, 83–84
individual assignment, 56, 58
lecture, 56–57, 58
Problem-Based Learning, 36, 59, 151–156
public hearing, 34–35
scientific research team, 36–37

trial, 35–36

Fort Erie (Ontario) Times, 352

Fosse, B., 387, 387

Fossil bacteria in Martian meteorite, 119–124, 333–337

Founder effect, 280

Fox, M. J., 372

Freshman advising case study, 295–298

classroom management of, 295–297

outcome of, 297–298

purpose of, 295

student profiles and issues for, 296, 297

Friedman, T., 1, 71

Frontier science, 43–44

Frydrychowski, V. A., 131, 402

Future of case-based teaching, 421

benchmarks for, 432–433

dilemma case on, 423–427

distance learning, 431

e-mail from Socrates, 437–441

teaching in year 2061, 429–435

virtual reality, 433–434

implications for teaching, 434–435, 440–441

Future of computers, 431, 431–432

Future research on case-based teaching, 417–418

G

Galapagos Islands evolution case study, 271–283

classroom management of, 282–283

conservation vs. tourism, immigration, and fishing industry, 276–278, 281–282, 357

of finches, 272–275, 280–281, 358

instructions to students for, 278–279

major issues of, 279–282

crisis, 281–282

formation and colonization of islands, 279–280

species formation in evolution, 280–281

objectives of, 279

photo identification for, 273, 274, 276, 278, 279, 281, 282, 283

teaching notes for, 279

of tortoises and sea cucumbers, 275–278, 357, 358

writing case study for, 357–359

Galileo, 285

Gallo, R. C., 158

Gates, B., 430

General applicability of cases, 46–47

Genetic drift, 280

Genetics, 10, 11, 33

cell division and mutations directed case study, 319–330

DNA fingerprinting clicker case, 232–234, 230–232

forensic DNA fingerprinting structured controversy, 287–294, 293

human cloning dialogue, 241–245

pedigrees and genetic disorders directed case study, 313–317

George C. Marshall Institute, 162

Giovanii, N., 333

Gjustland, T., 103

Global warming, 86–87, 149, 151, 390

case study of, 161–166, 162, 163

background of, 161–164

blocks of analysis for, 165–166

objectives of, 164–165

running of, 166

teaching notes for, 164–165

consequences of, 165

evidence for, 165

Kyoto Treaty on, 162–164, 166

responses to, 165–166

Goodall, J., 22

Goodsen, P., 189

Gould, S. J., 10

Govier, T., 287

Grading

in case-based teaching, 393, 395–399

asking for a product, 397

evaluating class discussion, 396–397

peer evaluation, 397, 397–399

of cooperative learning, 71, 130–131, 134, 139, 145
faculty dislike of, 395–396
of Team-Based Learning, 191, 192, 199–200, 201
using grade comparisons in assessment of case-based teaching, 415
Gragg, C., 30
Graham, M., 387
Graham, S., 410
Grant, P., 272–274, 279, 280–281, 358
Grant, R., 272–274, 279, 280–281, 358
Greene, G., 368
Greenhouse gas emissions, 162, 162–166
Group processing for cooperative learning, 129, 144
Growth of the Experimental Sciences, The, 22, 56

H
Hake, R., xiii, 221, 403
Haldane, J. B. S., 139
Haley’s Comet, 429
Hamilton, L., 172
Hansen, L., 148
Harris, K., 410
Harry Potter, 373
Harvard Assessment Seminar Reports, 128
Harvard Business School Bulletin, 46
Heifetz, J., 144
Hein, P., 337
Heller, J., 103
Heredity tyrosinemia directed case study, 313–317
classroom management of, 315–316
objective of, 315
questions for, 313–315
answers to, 316–317
teaching notes for, 315
Herer, J., 183
Herreid, C. F., 375, 402, 437–441
Hildebrandt, H. A., 129
Hinderer, D. E., 287
Historical cases, 83
Tuskegee Study of Untreated Syphilis in the Negro Male, 33, 100–110, 105, 345, 390
HIV disease, 372
clicker case on viral replication, 225
Duesberg phenomenon and, 157–160
Hoag, K. A., 416
Hoch, E. D., 368
Holograms, 432
Holubec, E. J., 128, 286
Homer, 1
Hoover, J. E., 371
Hoppe, R., 416
Houdini, H., 69
How to Win Friends and Influence People, 68
Howard, J., 140
Hudecki, M., 31, 385, 351–352
Human cloning, dialogue on, 241–245
Human experimentation, ethics of, 103, 104, 106–107
Human tissue transplantation, 266–267
Hybrid case methods, 251
advising freshman, 295–298
alien evolution, 253–263
evolution in Galapagos Islands, 271–283
Parkinson’s disease and fetal tissue transplantation, 265–270
structured controversy on DNA fingerprinting, 285–294
Hybridization, 275, 281
Hypothetico-deductive method, 37

I
“I Love Lucy” syndrome, 10–11
Ice Age, 211–218. See also Woolly mammoth extinction case study
Ice Station Sheba project, 161
Individual assignment format, 56, 58
Individual case study methods, 237
dialogue on human cloning, 239–245
student paper on Atlantic salmon controversy, 247–250
Inherit the Wind, 32
Interactive cases in future, 441
Interactive feedback, 222. See also Clickers in the classroom
International Assessment of Educational Progress, 4
Internet, 430. See also Computer-assisted learning
Interpersonal skills, in cooperative learning
groups, 128–129, 133, 143–144
Interrupted case method, 65, 167, 169–170, 362
clicker cases, 224–225, 228
compared with Problem-Based Learning, 169
for examining parental favoritism among coots, 171–177
stages in implementation of, 170
Intimate debate method, 149–150, 179
legalization of medicinal marijuana, 181–186
Inventing the AIDS Virus, 158
Issue cases. See Appraisal (analysis) cases
It's Not About the Bike, 87

J
Jacobs, J., 3
Jeffreys, A., 233
Johnson, D. W., 57, 127, 128, 130, 140, 142, 286
Johnson, M., 12
Johnson, R. T., 57, 127, 128, 130, 140, 142, 286
Johnson Space Center, 120
Jones, J. H., 104
Journal articles as bases for case studies, 89–98, 349, 353
how to use, 90
reasons for use of, 90–91
sample article on breast cancer and insurance coverage, 91–98, 95–97
Journal of Cannabis Therapeutics, 184
Journal of College Science Teaching, xv, 56, 57, 131, 134, 135, 197, 333, 334, 337, 375, 389
Journal of Ethnopharmacology, 184
Joyner, D., 141
Jurassic Park, 7, 32, 85, 92, 245, 434
Just-in-Time Teaching, 222

K
Kettering, C., 429
Knight, A. B., 189
Koschmann, T. D., 36
Kuhn, T., 9, 11
Kurtzweil, R., 431, 432
Kyoto Treaty, 162–164, 166

L
Lancet, 183
Large class methods, 219. See also Clickers in the classroom
Larson, G., 32
Law cases, xiii, 41, 43, 57, 83, 179
DNA fingerprinting in forensic medicine, 287–294
factual, 372
grading class discussions of, 396–397
Lawrence, J., 344
Learning
active, 205, 221, 222, 301, 402–403, 421
from case-based teaching, 416
computer-assisted, 430–435
conceptual, 416–417
connected to real-world experience, 16
cooperative, 13, 47, 125, 127–136, 142–146
developing higher order skills of, 30–31
distance, 430–431
Problem-Based, xiv, 23, 36, 42, 43, 50, 59, 132, 138, 144
Learning environments, 13
Learning objectives of cases, 376–377, 388–389
Learning with Cases, 49
Lecture, 44
case study method of, 56–57, 58 (See also Case study teaching technique)
cost effectiveness of, 222
deficiencies of, 205, 221, 222
in directed case method, 299, 301
effect of teachers’ skills on student performance, 133–134, 143
familiarity of science faculty with, 130
superiority of active learning strategies over, 402–403
traditional method of, 13, 15–17, 21
Lederman, N. G., 287
Leenders, M. R., 30, 49, 362
Length of cases, 47, 389
Leonardo da Vinci, 429
Lewis, R., 33
Light, R. J., 128
Lillie, J. K., 416
Lincoln, A., 371, 372
Linnaeus, C., 68
Lippman, W., 333
Listening and responding to students, 346
Listservs, 430
Lombardi, V., 146
Louganis, G., 12
Love-hate relationship with science and technology, 7
Lucas, J., 103
Lundeberg, M., 149
Lyon, B., 172

M
MacLaine, S., 421
Malaria and DDT ban, 353
Malcolm, Ian, 245
Marijuana
as gateway drug, 184, 186
legalizing for medicinal purposes, 181–186
arguments against, 184–186
arguments for, 183–184
configuring debate on, 182
student preparation for intimate debate on, 183
side effects of, 184–185
Marijuana Myths and Facts, 185
Marinol, 184, 186
Mars, case study of existence of life on debate on, 119–124
blocks of analysis for, 122–123
meteorite evidence and, 119–121, 122
study questions for, 121
teaching methods for, 123–124
teaching notes for, 122
how not to teach, 333–337
Mathematical models, 21–22
Mauffette-Leenders, L. A., 30, 49
Mazur, E., 222, 418
McCloskey, D., 22
McMichael, A. J., 158
McNair, M., 46
Measurement conversions, 352
Media as source for case studies, 349, 351–353
copyright laws and, 371
journal articles, 89–98, 353
newspaper articles, 351–353
novels, 85–87, 349
television news programs, 353
Medical cases, xiv, 32, 36, 42, 43, 51
breast cancer and insurance coverage, 90–98, 95–97
directed case method for, 299, 301
pedigrees and genetic disorders, 313–317
renal function study, 302–305
DNA fingerprinting in forensic medicine, 287–294
ethics of human experimentation, 103, 104, 106–107
factual, 372
generic, 373
interactive, in future, 441
interrupted case method for, 169
Parkinson’s disease and fetal tissue transplantation, 265–270
Problem-Based Learning format for, xiv, 23, 36, 42, 43, 50, 59, 132, 138, 144, 151, 153–155, 362
student responses to, 402
Tuskegee Study of Untreated Syphilis in the Negro Male, 33, 99–110, 105, 345, 390
Meiosis, 324–330, 325–327
Memorization, 13, 15, 407
Memory loss in mice, 352, 385
Mendel, G., 430
Merry, R., 30
Merseth, K., 41
Meteorite from Mars, 119–121, 122, 333–337.
See also Mars, case study of existence of life on
Michaelsen, L. K., 37, 57, 129, 132, 145, 187, 189, 195, 206, 209, 217
Miller, J., 3, 6, 8, 29
Mismeasure of Man, The, 10
Mistakes in case study teaching, 331
analysis of failure of case-based course,
339–341
faculty factors, 340–341
student factors, 341
existence of life on Mars case, 333–337
what not to do, 343–347
dealing with controversial emotional material, 344–345
failing to prepare, 344
fretting about unenthralling discussion, 347
leaving seats in a row, 346
not allowing enough time for discussion, 347
not calling on different people, 345–346
not getting to know students, 345
not having students produce a product, 347
not listening and responding to students, 346
not moving about classroom, 346
not using blackboard in organized way, 344–345, 390
starting with closed-ended question, 344
Mitosis, 319–323, 321, 322
Moby Dick, 368
Molecular computing, 432
Moore, G., 431
Moore, J., 7, 158
Moore, J. E., 101
Moore’s Law of Integrated Circuits, 431, 431–432
Morris, D., 403
Morton, J. R., 388
Morton, K., 41
Mostellar, F., 128
Moths to the Flame, 434
Movies
as source for case studies, 349
special effects in, 434
Mozart, 371, 372
Mullins, D. W., 3
Murphy, H. W., 129
Mutations and cellular division directed case study, 319–330, 321, 322, 325–327
questions for, 323, 329–330
Myers, A. C., 36

N
Names of students, importance of knowing, 67–69, 345
Nanotubes, 432
National Academy of Sciences, 8, 29, 38, 157, 162, 198, 382
National Aeronautics and Space Administration (NASA)
fossil bacteria in Martian meteorite, 119–124, 333–337
NASA Game, 72–73
National Center for Case Study Teaching in Science, xiv, 131, 192, 197, 234, 237, 257, 353, 382, 401, 405
National Center for Improving Science Teaching, 4
National Commission on Marijuana and Drug Abuse, 183
National Institute for Science and Technology, 232
National Institute on Drug Abuse, 185
National Marine Fisheries Service, 237
National Oceanic and Atmospheric Administration (NOAA), 164, 237
National Research Council, 8, 293, 407
National Science Foundation (NSF), 3, 5, 7, 120, 147, 197, 389, 407
National Science Teachers Association (NSTA), 4, 8
National Surveys of American Scientific Literacy, 29
Natural selection, 274, 280
Nature, 32, 151, 173, 174
Neanderthals, 211–218. See also Extinction case study
Nelson, R. A., 183
Neve, R., 352
New England Journal of Medicine, 32, 89, 90, 92, 169
New York Academy of Science, 6
New York Times, 6, 31, 351, 369, 385
New Yorker, 369
Newspapers as source for case studies, 351–353
Newsweek, 367, 369
Newton, D., 33
Newton, I., 22, 68, 243
Nobel Prize winners in science, 7
Northern Spotted Owl vs. logging controversy, 12, 35–36, 89, 248–249
Novels as source for case studies, 85–87, 349
Nowak, M. A., 158
Nuremberg Code, 103, 105, 106

O
Objectives of cases, 376–377, 388–389
O’Connor, J., 6
On Being a Scientist, 38
On Understanding Science, 42
Open-ended case design, 43, 375–379
building pedagogically rich cases, 378–379
educational objectives of, 376
features of, 376
pedagogical properties of, 377
spectrum of case study architecture, 378
as student-directed, 376
Opening question for case discussion, 84, 344, 390
Optical computing, 432
Oregon Institute of Science and Medicine, 162, 164
Origin of Species, 22

P
Pagels, H., 6
Paige, S., 344
Paired problem testing, 417
Paldy, L., xv
Paper Chase, The, 33, 41
Paradigms of science, 11–12
Paranormal beliefs, 5–6, 29, 128, 199
Parental favoritism among coots, interrupted case study of, 171–177
background of, 171–173, 173
classroom management of, 174–177
data analysis for, 172–173, 175
objectives of, 174
teaching notes for, 173–174
Parkinson’s disease, 265–270, 372
case study of, 265–268
classroom management of, 269–270
key issues in, 269
objectives of, 268
teaching notes for, 268–269
ethics of fetal tissue transplantation for, 267
sciences of, 266, 266
treatments for, 266–267
Pascal, B., 397
Pastor, A. M., 405
Paterno, J., 141–142, 141–143, 146
Pauling, L., 372
PBL. See Problem-Based Learning
Pedagogic utility of cases, 46
Pedigrees and genetic disorders directed case study, 313–317
classroom management of, 315–316
objective of, 315
questions for, 313–315
answers to, 316–317
teaching notes for, 315
Peer evaluation
in case-based teaching, 393, 397–399, 424
form for, 397
of cooperative learning groups, 134, 140
inconsistency of, 398
practice evaluations, 398–399
of Problem-Based Learning, 398
rules for, 398
of Team-Based Learning, 199–200
Peer Instruction, 222
Perry, W., 65
model of cognitive development, 9, 65, 91, 361, 363
Personal histories, 21
Perspectives, 1
Petition Project, 161
Piaget, J., 133, 341
“Pipeline problem,” 1, 4–5, 128
Plato, 239, 240, 430, 437, 438–440
Political correctness and case studies, 381–383
Pons, S., 38, 199, 333
Popoveski, J., 189
Positive interdependence, in cooperative learning groups, 128, 143
Postlewait, J., 403
Power of Problem-Based Learning, The, 151
Pre-Cambrian Period, 255–256
Prescott, W., 343
Pressley, M., 409, 410
Principia, 22
Problem-Based Learning (PBL), 151–156
AIDS and Duesberg phenomenon case study, 157–160
alien evolution futuristic case study, 253–263
classical method of, 154
development of, 151, 153–154
faculty tutors for, 154, 155
Galapagos Islands evolution case study, 271–283
global warming case study, 166
interrupted case method compared with, 169
in medical schools, xiv, 23, 36, 42, 43, 50, 59, 132, 138, 144, 151, 153–155, 362
peer evaluation of, 398
progressive disclosure of case for, 169
student performance and, 416
in undergraduate science courses, 151, 154
variations of, 154
writing case studies for, 356–357
Problem solving, 64, 66. See also Critical thinking
Proceedings of the National Academy of Sciences, 31, 162
Progressive disclosure of a case, 144, 169
Project 2061, 8, 29, 429
Providence Journal, 183
Pseudoscience, 1, 4, 5–6, 29, 128
Public hearing format, 34–35
Pure fantasy cases, 373–374
Q
Quantum computing, 432
Quigley, P. J., 432
R
Racial/ethnic minorities
benefits of small group learning for, 125, 128
racial stereotyping in case studies, 381–383
in science, 4, 128
Tuskegee Study of Untreated Syphilis in the Negro Male, 33, 99–110, 105, 345, 390
Rankin, C., 148
Rawlins, G., 432, 434–435
Reader’s Digest, 369, 373
Redmond, M. V., 77
Relevance of cases, 46
Relevance of science in society, 9–10, 31
Renal function directed case study, 301–305
classroom management of, 304–305
objectives of, 303
questions for, 302
answers to, 303–304
teaching notes for, 302–303
Reno, J., 372
Republic, 430, 439–440
Research
projects for students, 36–37
scientific research team teaching format, 36–37
teaching viewed as interference with, 133
Revere, P., 7, 8, 10, 13
Revitalizing Undergraduate Science, 29
Reynolds, J. I., 32
Richardson, B., 149–150
Rivers, E., 102, 107
Robbins, J., 387
Roberts, E., 352
Robyn, D., 46
Rockefeller, J. D., 142
Role playing
alien evolution futuristic case study, 257–263
Galapagos Islands case study, 278–279
Roosevelt, F. D., xiv, 22, 156
Rousseau, J.-J., 373
Russell, M., 351
S
Sagan, C., xv, 365
Scannapieco, F. A., 402
Schatz, I. J., 103
Schiller, N., 405
Schulman, L., 63, 156
Science, 5, 151, 157, 158, 248
Science and Engineering Indicators survey, 7
Science and Social Issues, 33
Science education
 areas of concern in, 3–7
deficiencies in, 1, 29
Science for All Americans, 29
Science literacy, 1, 407
 of American adults, 3, 6–7, 128
dimensions of, 9
 reasons for low rates of, 3–7
 standards of, 8–9
teaching to increase rate of, 7–10
Science News, 353
Scientific American, 22, 158
Scientific information explosion, 10–11
Scientific process, 9, 36–37
Scientific research team format, 36–37
Scientist, The, 157
Seating arrangement in classroom, 346
Sensenbrenner, J., 166
Sequencing tactics for cases, 378–379
Sexual selection, 274, 280
Seymour, E., 5
Shakespeare, W., 22
Shavelson, R. J., 408
Sherman, L. A., 367
Simon, J., 339–340
Simpson, O. J., 12, 287, 292
Simulation-based training, 433
Skeptical Inquirer, xv
Skepticism, 64–65, 199
Small group methods. See Cooperative learning
Smith, A., 22
Smith, K., 129, 142
Social skills, in cooperative learning groups,
 128–129, 133, 143–144
Societal issues in case studies, 382
Societal relevance of science, 9–10, 31
Socrates, 421, 437–441, 438
Socratic questioning, 33, 41, 43, 240
Spence, L., 190
Spermatogenesis, 324–328
Stabler, R., 56
Standardized science test scores, 1, 4, 127
Standards of science literacy, 8–9
State of Fear, 85–87, 349
Stein, R., 269
Stewart, B., 5
Stories, 19–21, 45. See also Case(s); Case study
 teaching technique
Storyteller’s box, 25, 25–26
Structured controversy, 285–294
 case study of DNA fingerprinting in forensic medicine, 287–294
critical thinking skills required for, 286
 Johnson and Johnson’s model of, 286
 Watters’ model of, 286–287
Student response systems. See Clickers in the classroom
Students
 barriers to cooperative learning, 132–133
calling on, 345–346
dislike of science, 221
dropping out of science studies, 1, 4–5, 128
 freshman advising case study, 295–298
 learning names of, 67–69, 345
 listening and responding to, 346
 preparation for college science courses, 1, 4
 product creation by, 347, 397
 research projects for, 36–37
 standardized science test scores of, 1, 4, 127
 support network for, 5
 using as critics in faculty development, 75–82
Study questions for cases, 389–390
Survivor, 142
Syphilis, 33, 99–110. See also Tuskegee Study of Untreated Syphilis in the Negro Male
T
Tarnvik, A., 69
Taylor, S. C., 287
Teachers
 barriers to implementation of cooperative learning strategies, 130–132
 importance of learning students’ names, 67–69, 345
training programs for, 13
using students as critics in faculty
development, 75–82
what not to do in case study teaching,
343–347

Teaching
of better science, 8
case-based (See Case study teaching
technique)
in context, 12–13
debate format for, 34, 57, 149–150
dilemma case in, 423–427
discussion format for, 33–34, 57, 58, 83–84
individual assignment format for, 56, 58
interactive techniques for, 13
lecture format for, 56–57, 58
limitations of traditional methods of, 13, 15–16, 21, 407
of more science, 7–8
about nature of scientific process, 9
of paradigms of science, 11–12
Problem-Based Learning format for, xiv,
23, 36, 42, 43, 50, 59, 132, 138, 144,
151–156
public hearing format for, 34–35
scientific research team format for, 36–37
small group/Team-Based Learning format
for, 37–38, 57–59, 58, 129, 132, 187,
189–193, 195–203
about societal relevance of science, 9–10, 31
trial format for, 35–36
viewed as interference with research, 133
in year 2061, 429–435

Teaching notes for case studies, 385, 387–391
reasons for inclusion of, 388
writing of, 388–391
classroom management, 389–391
introduction/background, 388
major issues, 389
objectives of case, 388–389
references, 391

Teaching with Cases, 49
Team-Based Learning, 37–38, 57–59, 129,
132, 187, 189–193, 195–203. See also
Cooperative learning

applications of, 197
background of, 190
class size for, 197
clicker cases for, 225
coverage of subject matter with, 192, 196,
402
defining learning objectives for, 210
in dental education, 205–210, 207, 209, 402
effect on class attendance, 192, 402
faculty preparation time for, 201
features of course organized for, 187, 190,
206
grades and peer evaluations in, 191, 192,
199–200, 201, 398
hints for implementation of, 201–202
outcomes of, 192, 200–201
Readiness Assurance Process in, 191
sample teaching sequence for, 193
steps in, 190–191
strengths of, 202–203, 210
student responses to, 192, 200, 208–210,
209, 402
types of projects for, 197–199
woolly mammoth extinction case study
for, 211–218

Team-Based Learning: A Transformative Use of
Small Groups, 189–190
Technology of future, 431–435, 440–441
Television
courses for distance learning, 431
news programs as source for case studies,
349, 353

Temin, H. M., 158
THC, 183, 185. See also Marijuana
The Age of Spiritual Machines: When Computers
Exceed Human Intelligence, 432
The World is Flat, 1, 71
Theism, U., 5, 128
They’re Not Dumb, They’re Different, xiv, 4, 13
Think-Pair-Share, 222
Thinking Toward Solutions: Problem-Based
Learning Activities for General Biology,
144
Thompson, W., 413
Time, 367
Tobias, S., xiv, 4, 5, 13, 29, 77, 128, 132, 221
Tolstoy, L., 139
Towne, L., 408
Trial format, 35–36
Tuskegee Study of Untreated Syphilis in the Negro Male, 33, 99–110, 105, 345
background of, 99–101
blackboard work on, 108
blocks of analysis for, 106–107
closing discussion of, 108–110
ethics of human experimentation and, 103, 104, 106–107
experiment of, 101–103
introduction to case study of, 104
opening question for discussion of, 107–108, 390
question outline for discussion of, 109
racial issue in, 107
study questions for, 103–104
teaching case of, 104–106
Types of cases, 32–33

U
Udovic, D., 403
United States
adult science literacy in, 3, 6–7, 128
economic status of, 1, 4, 29, 128
pseudoscience in, 1, 4, 5–6, 29, 128
standardized science test scores of students in, 1, 4, 127
students’ preparation for college science courses in, 1, 4
Unresolved cases, 84
U.S. Department of Education, 8
Fund for the Improvement of Postsecondary Education, 76
Using Cases to Improve College Teaching, 30

V
Verdon, G., 387
Videos as source for case studies, 349
Virgil, 55
Virology of HIV/AIDS, 157–160
Virtual classrooms, 431
Virtual reality, 433–434
implications for teaching, 434–435, 440–441
Vonderlehr, R., 101–102

Wall Street Journal, 352
Walters, J., 185
Walters, M. R., 402
Watson, J., 372
Watters, B., 286
WebCT, 227, 228
Webpages, 430
Weiss, I. R., 7
Wells, H. G., 429
Welty, W., 34
Wetherwax, P., 403
White, H., 154
Whitehead, R., 387
Will, B., 269
Williams, S. M., 414
Wilmut, Ian, 242–243, 245
Wizard of Oz, 371, 373
Women
benefits of cooperative learning for, 128
in science, 1, 5, 128
Women Who Run With Wolves, 45
Woolly mammoth extinction case study, 211–218
background of, 211–212
blocks of analysis for, 215–216
mammoths, 215
Neanderthals, 215–216
classroom management of, 217–218
evolution and extinction, 212–214
objectives of, 214–215
teaching notes for, 214
Wright, A. W., 402
Writing case studies, 31–33, 349, 355–359
approaches to, 356
art of writing readable cases, 365–369
beginnings and endings, 368
conversational style, 367
dialogue, 367
human interest, 366–367, 368, 369
knowing your audience, 365–366
not just the facts, 366
point of view, 366, 373
reading ease, 367, 369
sentence length, 367, 367–368
simple words, 368–369
based on preexisting materials, 32, 349, 351–353
copyright laws and, 371
journal articles, 89–98, 349, 353
newspaper articles, 351–353
novels, 85–87, 349
television news programs, 353
factual vs. fictional, 371–374
how much information to include, 361–364
for Problem-Based Learning, 356–357
recipe for, 355–359
brainstorming principles to teach, 356
deciding on topic, 356
determining discussion topics, 357
introducing terms/concepts, 357
listing characters affected, 356
reviewing/researching topic, 356
sample case of evolution on Galapagos Islands, 357–359
writing discussion questions, 357
writing draft, 356
from scratch, 32–33
teaching notes, 385, 387–391
Writing Cases, 49

Z
Zeidler, D. I., 287
Zimmer, L., 186