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Palmer Deep canyon along the central West
Antarctic Peninsula is known to have higher
phytoplankton biomass than the surrounding non-
canyon regions, but the circulation mechanisms that
transport and locally concentrate phytoplankton
and Antarctic krill, potentially increasing prey
availability to upper-trophic-level predators such as
penguins and cetaceans, are currently unknown. We
deployed a three-site high-frequency radar network
that provided hourly surface circulation maps
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over the Palmer Deep hotspot. A series of particle release experiments were used to estimate
surface residence time and connectivity across the canyon. The majority of residence times
fell between 1.0 and 3.5 days, with a mean of 2 days and a maximum of 5 days. We
found a highly significant negative relationship between wind speed and residence time.
Our residence time analysis indicates that the elevated phytoplankton biomass over the
central canyon is transported into and out of the hotspot on time scales much shorter than
the observed phytoplankton growth rate, suggesting that the canyon may not act as an
incubator of phytoplankton productivity as previously suggested. It may instead serve more
as a conveyor belt of phytoplankton biomass produced elsewhere, continually replenishing
the phytoplankton biomass for the local Antarctic krill community, which in turn supports
numerous top predators.

This article is part of the theme issue ‘The marine system of the West Antarctic Peninsula:
status and strategy for progress in a region of rapid change’.

1. Introduction
In the coastal West Antarctic Peninsula (WAP), the food web is comparatively short and
characterized by intense phytoplankton blooms that are grazed by Antarctic krill (Euphausia
superba), a primary prey source for penguins and other predators. Although krill aggregations
occur throughout the WAP [1], the distribution of penguin populations and their associated
foraging areas are spatially coherent with submarine canyons and near-shore deep bathymetry
within biological hotspots that are characterized by enhanced biological production and elevated
biomass [2–5]. Within these hotspots, penguin foraging locations may be highly variable [6] in
accordance with the small-scale patchy distribution of their prey [7,8]. However, the spatio-
temporal coherence between penguin colonies and these deep canyons suggests that resources
are transported to, and concentrated within, these hotspots. The implication is that circulation
features associated with these canyons may enhance food web transfer, termed ‘trophic focusing’
by Genin [9], and are the underlying physical mechanism that maintains the hotspot.

Palmer Deep canyon is a representative biological hotspot located near Palmer Station, Anvers
Island, along the WAP (figure 1). Here, local islands have been occupied by Adélie penguins
(Pygoscelis adeliae) for nearly 1000 years [10] and now include growing gentoo (P. papua) and
chinstrap (P. antarctica) penguin colonies, suggesting Palmer Deep is conducive to penguins in
general. Despite variation in climate over the last 1000 years [11], the persistence of these penguin
colonies suggests that the presence of the canyon mediates and/or enhances the accessibility and
predictability of their prey over ecological time scales [2]. Palmer Deep has higher phytoplankton
biomass than the surrounding non-canyon regions [5], but the circulation mechanisms that
transport and locally concentrate phytoplankton and attract Antarctic krill, potentially increasing
prey availability to penguins, are unknown. Prior work in the region suggests that local upwelling
supports and maintains local phytoplankton growth that in turn fuels the biological hotspot [12].
This would require that phytoplankton blooms are retained within the hotspot, benefiting from
upwelled nutrients from below. Therefore, surface circulation patterns within the hotspot itself
are critical to understanding the mechanisms that fuel and maintain the primary productivity
that supports the food web. Traditionally, circulation associated with canyons is inferred from
moorings and ship-based surveys [13–15]. Additionally, numerical modelling simulations of the
three-dimensional flow field have been used to estimate the fate of simulated passive particles
[16,17]. Specifically, Lagrangian particle tracking experiments have been used in the WAP to
study transport pathways between the outer shelf and near-shore biological hotspots [18],
connectivity between different regions of the WAP [19], and the transport and fate of larval
Antarctic krill along the WAP [20,21]. These studies identify key transport pathways across the
shelf that link the Antarctic Circumpolar Current offshore to the near-shore biological hotspots.
The models used for these experiments cover the entire shelf region with horizontal resolutions
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Figure 1. Map of study site with hourly map of surface currents (cm s−1) sampled on 30 January 2015 00:00 GMT. The HF radar
sites at Palmer Station (black triangle), Joubin Islands (black square) andWauwermans Islands (black diamond) are also shown.
The red line is 99.5% contour for tagged Adélie penguin locations from 2002–2011 [6].

down to approximately 4 km [18,19]. Additionally, particle tracking experiments have been used
to quantify the residence time based on the loss of deployed particles over time [19]. Longer
residence times may be indicative of biological hotspots acting as biological incubators that
support local phytoplankton growth. While these modelling studies provide valuable insight
into the role transport may have on the ecology of the WAP, they typically do not resolve local
processes that may influence the availability of phytoplankton to upper trophic levels within
these hotspots. New observational tools resolve these circulation processes at the scale of the
hotspot itself. Ocean observing technologies such as autonomous underwater vehicles and high-
frequency radar (HFR) can augment existing observations to better resolve circulation within the
hotspot [22].

Here we discuss the residence time of the surface layer over the Palmer Deep hotspot using
passive particle trajectories estimated from HFR surface current maps. Unlike prior work, we use
observed currents, mapped at high temporal (hourly) and spatial (1 km, horizontally) resolution,
over the entire canyon. We focus our analysis on a single summer foraging season of the local
Adélie penguin colonies (January–February 2015).

2. Methods

(a) High-frequency radar
HFR systems, deployed along a coastline, use Bragg peaks within a transmitted signal (3–
30 MHz) scattered off the ocean surface to calculate radial components of the surface velocity at a
given location [23]. Individual sites, composed of a transmitting and receiving antenna, generate
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maps of surface component vectors directed towards the antenna with range resolution of 500 m
radially and 5° in azimuth. Since these data are based on the return scattered off surface gravity
waves, the observations are representative of the circulation at water depths that influence the
surface waves, termed effective depth [24]. Operating at central frequencies of 25 and 13 MHz,
our network measured the circulation at an effective depth of 0.5 m [24]. While the HFR provides
a highly resolved surface current field, it should be noted that these horizontal velocity fields are
influenced by vertical velocities associated with mesoscale features (i.e. upwelling, downwelling)
but do not resolve the scales of vertical turbulence associated with winds, moving ice, surface
heating/cooling or brine rejection. An analysis of 10 years of autonomous glider hydrographic
surveys in the region shows that, during the summer months, a homogeneous surface mixed
layer forms and that phytoplankton blooms were found to be distributed evenly throughout this
layer [25]. Other HFR deployments sampling similar homogeneous surface mixed layers have
shown that, due to the low shear within the surface layer, the circulation measured at the effective
depth is representative of currents deeper into the surface mixed layer [26]. This suggests that our
HFR observations are representative of the horizontal circulation influencing the phytoplankton
biomass within the homogeneous surface mixed layer.

In November 2014, we deployed the three-site HFR network to provide coverage of Palmer
Deep canyon and the surrounding flanks. The data footprint covered the historic range of Adélie
penguin foraging with hourly surface current maps that resolved the surface circulation dynamics
influencing the transport of phytoplankton within the surface layer (figure 1). The first HFR
site was deployed at, and powered by, Palmer Station. The other two sites were deployed at
the Joubin and Wauwermans Island chains (figure 1), and relied on remote power modules
(RPMs) that were constructed on site. The RPMs generated the required power for the HFRs
through a combination of small-scale micro wind turbines and a photovoltaic array with a 96 h
battery back-up [22]. The RPMs consisted of a single watertight enclosure, used to house power
distribution equipment, the HFR, and the communication gear. Built-in redundancies within the
RPMs, including wind and solar energy harvesting, and independent battery banks, ensured
that, should any one component fail, the unit would be able to adjust autonomously. Direct
communication between the two remote sites and Palmer Station was enabled with line-of-sight
radio modems (900 MHz Freewave), which enabled remote site diagnostics, maintenance and
surface current data transmission in real time.

The three-site network collected hourly measurements of ocean surface currents over our two-
month study period, which covered the local Adélie penguin breeding season. Every hour, radial
components from each of the three sites were geometrically combined into two-dimensional
vector maps using an optimal interpolation algorithm [27]. The total vector maps were calculated
on a fixed 1 km grid covering an approximately 1500 km2 area of ocean over the region of Palmer
Deep (figure 1). The average data coverage was 97% during our months of interest between 1
January 2015 and 1 March 2015. The raw surface velocity fields were post-processed to remove
the local tides using the MATLAB software toolbox, t-tide [28]. The tidal constituents were fitted to
the raw surface currents measured between 1 December 2014 and 1 May 2015 (151 days) at each
point in the HFR grid. Thirty-five different tidal constituents, within the 95% confidence interval
(CI), accounted for 12.3% of the total variance of the raw velocities. The four most energetic tidal
constituents in the diurnal and semi-diurnal bands were the (O1, K1) and (M2, S2), respectively.
The de-tided velocity time series at each HFR grid point were calculated as the measured raw
velocity minus the tidal fit. All other high-frequency variability not associated with tides was
retained in the de-tided data. Maps of both the raw and de-tided surface currents were used to
estimate the time evolution of the residence time of the surface layer with and without the effect
of tide.

(b) Simulated particle release experiments
A series of particle release experiments were used to estimate residence time over the two-month
study period. Raw and de-tided hourly surface current maps provided by the HFR network were
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Figure 2. Map of the simulated drifter release points for the central canyon (green), JIF (blue) and WIF (red) regions. The sub-
regions for the connectivity analysis are also contoured in the same respective colours. The HFR sites are indicated as in figure 1.

used to simulate passive particle trajectories initially released on a fixed 1 × 1 km grid (matching
the resolution of the underlying HFR data) centred over the Palmer Deep canyon (figure 2). For
each particle release experiment, one passive particle from each grid point (332 particles in total)
was released and advected in the HFR velocity field with a fourth-order Runge–Kutta integration
scheme. The position of each particle was tracked hourly until it reached the edge of the domain
(figure 2). These experiments were repeated every 6 h for the raw and de-tided velocity fields
from the first release on 1 January 2015 00:00 GMT until the last on 1 March 2015 00:00 GMT.

Residence time was estimated from the particle trajectories following the methods described
in [19]. Briefly, residence time for a given release experiment was based on the e-folding time
scale or the time when the fraction of particles that remain within the HFR footprint was reduced
by the first e-folding scale, which is 36.79% of the number initially released. With this method,
we estimated a residence time based on the raw and de-tided velocity fields for each 6 h release
experiment throughout our two-month study.

We also estimated residence time within, and connectivity between, sub-regions within
the HFR footprint (figure 2). Three regions were defined within the hotspot based on the
underlying canyon bathymetry, including the central canyon (CAN), Joubin Islands Flank (JIF)
and Wauwermans Islands Flank (WIF). The particle grid included 187, 84 and 61 particles for
the CAN, JIF and WIF sub-regions, respectively (figure 2). For these experiments, the residence
time was estimated as the time required to reduce the fraction of particles that remain in the
HFR footprint to one e-folding scale (36.79%) of those initially released in each sub-region. For
example, at a given release time, the residence time for JIF was the time it took for 53 of the 84
particles to leave the HFR footprint.
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Table 1. Residence time for each region.

region
number of
particles velocities

mean residence
time (days)

maximum
residence time
(days)

minimum
residence time
(days)

entire domain 78 684 raw 2.1± 0.9 6.0 0.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

de-tided 2.1± 0.9 5.0 0.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

central canyon 44 319 raw 2.4± 1.1 6.8 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

de-tided 2.3± 1.1 6.7 0.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Joubin Islands Flank 19 908 raw 2.5± 1.6 7.8 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

de-tided 2.5± 1.5 7.7 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wauwermans Islands Flank 14 457 raw 1.2± 0.9 5.0 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

de-tided 1.2± 0.8 5.1 0.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Tracks of particles released from each sub-region were also used to quantify the connectivity
between the sub-regions. The paths of each particle released from each point on the grid were
tracked every hour until they left the HFR footprint. These tracks were then used to determine the
percentage of particles initially released from each sub-region that entered either of the other two
sub-regions. This percentage was calculated for each release experiment, every 6 h throughout the
two-month study.

(c) Meteorological data
Meteorological data were collected at the two remote HFR sites in the Joubin and Wauwermans
Islands (figure 1). These data included 15 min measurements of air temperature, wind and solar
radiation. The winds over the HFR footprint were estimated as the average of the winds measured
at the Joubin and Wauwermans Islands sites. For this analysis, we refer to the two-site average
winds as merged winds. For comparison to the residence time estimates, the 15 min merged wind
fields were averaged to match the residence time estimates for each 6 h release. For example, the
residence time estimated from the particles released on 1 January 2015 and 00:00Z was 1.9 days.
Therefore, the merged wind field matched to this residence time was averaged from the initial
release at 00:00Z on 1 January 2105 through 21:45 on 2 January 2015, 1.9 days later. This was
repeated for each 6 h particle release experiment to average the winds over the same time that the
particles transited through the HFR field.

3. Results

(a) Residence time
The basic statistics of the residence time estimated for the entire domain and each sub-region are
shown in table 1. Overall there were small differences between the residence times estimated from
the raw and de-tided velocity fields. The mean residence time for both the raw and de-tided
currents over the entire domain was 2.1 ± 0.9 days. The similarity between the raw and de-tided
results indicates that the sub-regions are of sufficient area to ensure that the particles are not
immediately removed by the excursion of a single tidal cycle. The majority of residence times over
the entire domain fell between 1.0 and 3.5 days, with a few outliers extending out to a maximum
of 5 days. Of all the sub-regions, the central canyon most closely matched the entire domain,
with values primarily between 1.0 and 3.2 days. The JIF generally had longer residence times,
with a majority of values falling between 1.0 and 4 days, and a few outliers out to the maximum
observed residence time of 7.8 days. The WIF fell on the opposite side of the distribution, with
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Table 2. Connectivity between the regions.

initial region destination region
mean percentage
of particles

max percentage of
particles

min percentage
of particles

central canyon Joubin Islands Flank 30± 20 72 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wauwermans Islands Flank 53± 25 100 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Joubin Islands Flank central canyon 51± 30 98 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wauwermans Islands Flank 26± 30 98 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wauwermans Islands Flank central canyon 37± 23 98 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Joubin Islands Flank 7± 14 67 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

most residence times between 0.2 and 2 days. The minimum residence time was shorter in the
WIF sub-region compared to all the other regions. In summary, all regions indicate that residence
times are typically less than 4 days, with a mean of approximately 2 days. The JIF and WIF fall on
the longer and shorter side of this general distribution, respectively. Given the small difference
between the residence times estimated from the raw and de-tided velocity fields, the remainder
of the analysis focused on the particle trajectories based on the raw velocities.

(b) Connectivity
Connectivity between the different sub-regions was estimated from the individual particle
trajectories. Connectivity was quantified as the percentage of particles released from one region
that entered into another region over the two-month period. As with residence time, connectivity
was estimated for each sub-region relative to the other two for each 6 h release. Basic statistics
of the connectivity are shown in table 2. Given the high variability relative to the reported
means, we report on the sample mean as a general statistic of the connectivity between sub-
regions and discuss possible drivers of this variability in the following sections. For the central
canyon, a greater percentage of particles moved southeast over the WIF compared to the JIF
(53% compared to 30%). Particles that did not move into either flank exited the canyon to the
southwest, or through the canyon head towards the northeast into the Bismarck Strait. While a
similar percentage of particles (approx. 25%) exited both ends of the canyon, the entrance to the
Bismarck is one-third the width across the southwest canyon exit. Therefore, the particles moving
northeast into the Strait are more concentrated compared to those leaving through the offshore
exit of the canyon. For particles initially released over both flanks, we found that more particles
moved across the canyon from the JIF to the WIF (26%) than from the WIF across the canyon to
the JIF (7%). Similarly, most of the particles that entered the canyon originated over the JIF.

(c) Residence time versus local winds
The time series of residence time estimated for the entire domain was compared to local winds
observed on either side of the canyon. Over the two-month period, the residence time of the entire
domain fluctuated between the minimum of 0.6 days and the maximum of 5 days (figure 3).
The longer residence times occurred later in the time series towards the latter half of February.
Shorter events, with residence times less than 1 day, were scattered throughout the time series.
The average wind speed based on estimated residence time fell between 2 and 12 m s−1. The
calmest winds are observed in mid-January followed by a much more variable wind field in
February, with several events greater than 9 m s−1 lasting one to several days. Throughout the
time series there was a consistent pattern of lower residence times coincident with wind speeds
greater than 8 m s−1 (horizontal line, figure 3). This was most evident towards the end of the
time series where large fluctuations in wind speed were matched with changes in residence time.
During these February events, there was a rapid decrease in residence time with increased wind
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Table 3. Residence time versus wind speed.

region slope 95% CI p-value r2

entire domain −0.18 −0.24 to−0.19 �0.001 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

central canyon −0.15 −0.25 to−0.06 �0.001 0.04
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Joubin Islands Flank −0.43 −0.63 to−0.25 �0.001 0.08
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Wauwermans Islands Flank −0.06 −0.12 to 0.01 0.04 0.01
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

speed followed by a lengthening of residence time as the winds relaxed between events (figure 3).
We tested for the effect of wind speed on residence time in two ways. First, we performed a major
axis regression (model II) on the wind speeds and residence times [29]. Unlike ordinary least-
squares regressions, major axis regression assumes errors in both wind speeds and residence
time. We found a highly significant negative relationship (p � 0.001) between wind speed and
residence time. For every 1 m s−1 increase in wind speed, residence time decreased by 0.18 (95%
CI −0.19 to −0.24) days. However, there was a large degree of unexplained variance in residence
time with respect to wind speed (r2 = 0.13). Additionally, we tested within each sub-region and
found that the CAN and JIF statistics were similar to the total domain. The WIF, however, had a
much weaker relationship between residence time and local wind speed (table 3).

To further illustrate this, we grouped wind speed into 1 m s−1 centred bins. For wind speed
less than 8 m s−1 there was a much broader distribution of residence times compared to the less
frequent high-wind-speed events (figure 4). The same analysis was repeated for wind direction.
Here, we binned the wind direction into 30° bins (clockwise from true north). For each bin,
we assembled the residence time when winds originated from that direction. Unlike for wind
speed, the residence times were highly variable across all wind directions (figure 4). We tested
both binned wind speed and binned wind direction in a Tukey multiple comparison test across
these bins [30]. Only wind-speed bins 8–11 m s−1 showed statistically lower residence times
(p < 0.01) than wind-speed bins 4–7 m s−1. Wind-speed bin 12 m s−1 had too few samples to be
meaningfully tested. For wind direction, wind from 0° had significantly lower residence times
than wind from 30° and 60° (p < 0.01). Also, wind from 30° had significantly higher residence
times than wind from 210° (p < 0.01). Field experience in this region suggests that there is a lot of
heterogeneity in wind direction across the domain. While we did have two wind stations in this
analysis, it is still insufficient to resolve the local effects of topography on the wind direction over
the entire domain. Therefore, the lack of effect on wind direction may be indicative of the poorly
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Figure 4. Box-and-whisker plots showing the distribution of residence times binned by (a) wind speed and (b) wind direction.
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that fall outside the data range encompassed by the dashed lines have been indicated with red markers (+).

resolved wind fields. In general, our analysis suggests that wind speed has a much larger impact
on residence time than wind direction.

4. Discussion
Currently, canyons along the WAP are thought to be centres of upwelled, nutrient-rich Upper
Circumpolar Deep Water (UCDW), which supports local phytoplankton growth and associated
food webs [5,12,31]. However, the surface residence times estimated from the HFR currents over
Palmer Deep were on average 2 days, with a few outliers as long as 7 days. These residence
time estimates based on the highly resolved surface circulation observations are much shorter
than the estimated in situ water column phytoplankton specific growth rates of 0.01–0.1 d−1

(doubling time of 7–70 days) [32]. Even if we relax the definition of residence time to be the
time it takes for 90% of the particles to exit the domain, the mean residence time only increases to
4 days, indicating that the longevity of surface particles in this biological hotspot is shorter than
reported phytoplankton growth rates. Our surface residence time estimates are also shorter than
other reported values along the WAP. Using modelled currents, Piñones et al. [19] report surface
summer residence times between 6 and 16 days for three hotspots in the central WAP. A similar
analysis using the same model, residence time metrics and our HFR domain estimated surface
summer residence times for Palmer Deep longer than 10 days [33].

Palmer Deep sits in the middle of the WAP ecosystem, where deeper UCDW is delivered
from off the shelf into the canyon below the seasonal mixed layer [13]. Additionally, a coastal
current circulating anticlockwise around Anvers Island potentially delivers fresh water into the
biological hotspot from the northeast [15]. In general, these currents should advect particles from
the west towards the east, consistent with our connectivity results reported in table 2. While
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our HFR measurements are limited to the surface layer, these high-resolution circulation maps
provide an unprecedented look at the mesoscale surface dynamics across the Palmer Deep canyon
influencing the surface phytoplankton blooms. During the summer, a buoyant upper layer forms
upon warming and surface freshening by ice melt and glacial run-off. These stratified surface
layers may be isolated from the canyon bathymetry below and are, therefore, probably driven
by different mechanisms than the deeper layers of the canyon. The highest concentrations of
chlorophyll, indicative of phytoplankton biomass, are confined to this upper surface layer [25,34].
While barotropic tides influence the entire water column, the surface mixed layer circulation is
probably driven primarily by local winds. Our HFR network was able to resolve the dynamics
of this surface layer, including the influence of the tides and local winds. These wind-driven
processes are typically not well represented in larger-domain numerical models of the WAP shelf.

Our analyses show that surface winds, not local tides, influence local surface residence time
on scales of hours to days. Higher wind speeds were shown to reduce surface residence times.
These events, while rare in the summer, could have significant influence on the ecology of the
Palmer Deep hotspot. Adélie penguin foraging trips near Palmer Station are short (approx. 12 km)
compared to other penguin colonies. From 2002–2011, 99.5% of telemetered Adélie penguin
locations were located within the contour on figure 1 [6], even though Adélie penguins are capable
of very long foraging trips (up to 100 km per day [35]). This suggests that prey fields are not
depleted over this relatively short range. One possible explanation for this is that the waters
are continually refreshed with new phytoplankton providing food for the Adélie’s primary prey,
Antarctic krill, thereby sustaining the local krill population and reducing the need for penguins
to take longer foraging trips. In addition, Antarctic krill may also be transported into the hotspot,
further supplementing the local population.

Antarctic krill undergo diel vertical migration (DVM), leaving the surface waters for deeper
layers at night [36]. While DVM has been hypothesized to be a means of predator avoidance
[37], it is plausible that this behaviour may also allow Antarctic krill to remain within the
Palmer Deep canyon for longer than the typical surface residence time would allow. This is
because the deeper layers within canyons exhibit relatively longer residence times (up to 30+
days in the model estimates) [19,33]. The surface layer, on the other hand, supports most of
the phytoplankton biomass [25,34] that is targeted by Antarctic krill [38]. Antarctic krill have
high daily phytoplankton ingestion rates. Bernard et al. [39] showed that summertime ingestion
rates of Antarctic krill in the coastal WAP averaged 6.37 µg Chl a ind.−1 day−1 (chlorophyll a
per individual per day). Abundances of Antarctic krill in aggregations over Palmer Deep are
highly variable, with a mean of 87 ind. m−3 (standard deviation = 188 ind. m−3; K.S. Bernard 2017,
unpublished data). Maximum abundances were reached in large, densely packed aggregations
(2168 ind. m−3; K.S. Bernard 2017, unpublished data). Applying the average ingestion rates of
coastal Antarctic krill to these abundance values gives a sense of the grazing impact that these
organisms may have on local phytoplankton standing stocks. At an average, grazing rates at
the aggregation scale could equate to 0.6 mg Chl a m−3 day−1, with maximum values nearing
13.8 mg Chl a m−3 day−1. A high renewal rate of phytoplankton biomass would be critical to
sustaining such high grazing rates. Increased frequency of stronger wind events associated with
climate variability (e.g. Southern Annual Mode, El Niño/La Niña) will lead to more frequent
flushing events that transport surface particles, including phytoplankton, into and quickly out of
the Palmer Deep hotspot.

The passive particle trajectories were consistent with the presence of a persistent coastal
current moving east along the southern coast of Anvers Island [15]. In the absence of wind,
this current probably drives a mean flow from the canyon east into the Bismarck Strait.
Our estimated residence time suggests that the elevated phytoplankton biomass over the
central canyon [5] is transported into and out of the hotspot on time scales much shorter
than the observed phytoplankton growth rate, suggesting that the canyon may not act as an
incubator of phytoplankton productivity as previously suggested [12]. Alternatively, the surface
circulation, responsive to variable local winds, may serve more as a conveyor belt delivering
phytoplankton biomass produced elsewhere, continually replenishing it for the local Antarctic
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krill community, which in turn supports numerous top predators. This change in paradigm
emphasizes the importance of surface circulation to the delivery of phytoplankton biomass to
this biological hotspot.
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