farther offshore than in 1993. As a result, the 33.7 and 33.8 iso-
halines were farther offshore (20–50 km) in 1994. The
strongest salinity gradients occurred along the inner shelf
region in 1993 and in the region near Anvers Island in 1994. In
both years, a region of higher salinity water was found near
Anvers Island but was more pronounced in 1994.

The decreased offshore temperature and decreased salinity
in 1994 suggest that this year may have been characterized by a
larger influx of fresh water from the regions to south or inner
shelf or by increased local ice melt. For example, it is possible
that the wind patterns and inner shelf circulation in 1994 were
such that more of the fresh water near the coast was allowed to
spread out onto the shelf. The LTER data, however, are not ade-
quate to evaluate the influx of fresh water from the south or
inner shelf. The contribution from local ice melt may be esti-
rated by considering the duration and extent of the ice cover in
the preceding austral winter. During the 1992 austral winter, the
sea-ice duration around Palmer Station was about 18 weeks and
the maximum sea-ice extent in September was to 60°50'S. These
values compare to a sea-ice duration around Palmer Station of
15 weeks and a maximum September extent of 62°20'S during
austral winter 1993. Thus, in 1993, the sea ice was of greater
extent and disappeared faster than in 1992. It may be that more
rapid melting of more sea ice in 1993–1994 introduced fresh
water faster than it was mixed or advected away.

The source of the high-salinity water around Anvers Island
is unknown, but this water may derive from outflow from the
Bransfield Strait through the Gerlache Strait. It is, however,
more likely that this may be a region of upwelling of the saltier
and warmer Circumpolar Deep Water that is found throughout
the continental shelf west of the Antarctic Peninsula (Hofmann
et al. in press; Smith et al. 1995), which would then mix with the
Antarctic Surface Water. Irrespective of the source of this water,
however, the near-surface temperature and salinity distribu-
tions indicate that the region near Anvers Island differs from
the rest of the west Antarctic Peninsula shelf region.

This work was supported by National Science
Foundation grant OPP 90-11927. Computer facilities and sup-
port were provided by the Center for Coastal Physical
Oceanography at Old Dominion University.

References
Water mass distribution and circulation west of the Antarctic
Peninsula and including Bransfield Strait. In R.M. Ross, E.E. Hof-
mann, and L.B. Quetin (Eds.), Foundations for ecological research
west of the Antarctic Peninsula. Washington, D.C.: American Geo-
physical Union.
Hofmann, E.E., B.L. Lipphardt, Jr., R.A. Locarnini, and D.A. Smith.
graphic data collected aboard the R/V Polar Duke January–Febru-
ary 1993 (CCPO Technical Report No. 93-02, Center for Coastal
Physical Oceanography). Norfolk: Old Dominion University.
1995. Palmer LTER: Hydrography in the inner shelf region. Antarct-

Palmer LTER: Temporal variability in the location of the
Antarctic Circumpolar Current along the west Antarctic
Peninsula continental shelf

JOHN M. KLINCK, Center for Coastal Physical Oceanography, Old Dominion University, Norfolk, Virginia 23529

As part of the Palmer Long-Term Ecological Research
(LTER) program, a series of cruises was completed during
which physical and biological properties of the continental
shelf west of the Antarctic Peninsula were measured. In partic-
ular, between January 1993 and January 1994, four cruises,
covering the same region, provide observations adequate to
describe seasonal variability of hydrographic properties. These
cruises occurred in January 1993 (Lascara et al. 1993), March
to May 1993 (Hofmann et al. 1993), August to September 1993
(Klinck, Smith, and Smith 1995), and January 1994 (Hofmann
et al. 1996).

The Antarctic Circumpolar Current (ACC) flows north-
eastward through Drake Passage; its southern boundary is
near the continental shelf break west of the Antarctic
Peninsula (Orsi, Whitworth, and Nowlin 1995). Associated
with the southern boundary of the ACC is a distinctive water
mass, Upper Circumpolar Deep Water (UCDW), which is char-
acterized by relatively warm temperatures (above 1.5°C) and
high salinity (34.7) (Orsi et al. 1995). Because of the elevated
temperatures, the location of the ACC is easy to identify along
this shelf. Thus, the objective of this article is to use the Palmer
LTER hydrographic observations to describe changes in
hydrography that occurred between January 1993 and January
1994 at the outer continental shelf.

The area covered by the four LTER cruises is shown in fig-
ure 1, where locations are determined by the LTER grid sys-
tem (Waters and Smith 1992). This system is based on dis-
tances in kilometers along the shelf and across the shelf from
a base point on the peninsula far to the southwest (on
Alexander Island).
The repeated hydrographic measurements near the shelf break, coupled with the easily identified core of the southern ACC, allow a determination of the time variability in its position. The location of the 1.8°C isotherm at a depth of 300 meters relative to the LTER baseline (figure 1) was determined for each transect on each cruise (table). Two points are clear immediately. First, the 1.8°C isotherm is never observed in the middle portion of the sampling region because the sampling did not extend far enough offshore to capture the southern boundary of the ACC. Second, the location of the ACC is variable everywhere except at the north and south ends of the sampling region.

No clear pattern is evident to the location of the 1.8°C isotherm along the shelf break. In particular, the ACC location at one section does not indicate the location at any other section, which means that the across-shelf movement of this current does not occur as a large-scale shift in position but rather as local meanders with scales smaller than the resolution of the hydrographic observations [100 kilometers (km)]. Dynamical considerations indicate that the meander length scale should be 30 to 50 km.

The nature of the shelf break variability is illustrated by the vertical temperature distribution from the four cruises from a transect in the southern portion of the sampling region (figure 2). The pool of water just cooler than 1.8°C, seen in January 1993 (figure 2A), indicates a recent intrusion of UCDW. This temperature structure is reminiscent of that seen at the outer edge of the southeastern U.S. shelf where the Gulf Stream meanders are associated with exchange of water across the shelf break (Lee and Atkinson 1983). Two months later, the ACC is firmly against the shelf break (figure 2B). Five months later, the warm core of the ACC has retreated more than 20 km offshore (figure 2C). A pool of water with temperatures above 1.6°C remains on the middle shelf and the 1.4°C isotherm has moved closer to the coast. After an additional 4 months, the warmest waters are still offshore and the 1.4°C isotherm on the shelf has lifted offshore almost to the shelf break (figure 2D).

The implication of these measurements is that the oceanic flow along the outer shelf break west of the Antarctic Peninsula is dynamically active, likely due to baroclinic instability and the interaction of this current with the rugged topography of the shelf break. The time and space scales of this variability are typical of other meandering coastal currents (timescales of 1–2 months and space scales of 30–50 km). This variability is smaller and faster than can be measured by the current sampling scheme, leaving the possibility that changes between cruises will be a mixture of real interannual variability and higher frequency changes. It appears that this variability is largely confined to the outer half of the continental shelf, but these details remain to be determined.

This work is supported by National Science Foundation grant OPP 90-11927. Computer facilities and support were provided by the Commonwealth Center for Coastal Physical Oceanography. This support is appreciated.

| Location of the 1.8°C isotherm at a depth of 300 m at the outer edge of five across-shelf transects occupied during four cruises between January 1993 and January 1994 |
|---|---|---|---|---|---|
| Location | 93a | 93b | 93c | 94a | Shelf break |
| 200 | 150 | 150 | 160 | NO | 140 |
| 300 | OFF | 160 | 180 | 185 | 160 |
| 400 | 180 | OFF | OFF | 180 | 160 |
| 500 | OFF | OFF | OFF | OFF | 190 |
| 600 | 190 | 190 | OFF | 195 | 170 |

NOTE: Each section is identified by its distance alongshore from a base point (Waters and Smith, 1992). The location of the isotherm is in kilometers offshore of a base line along the Antarctic Peninsula. The location of the shelf break along each of these lines is included. The absence of observations along a transect is indicated by NO. The notation OFF indicates that the isotherm was not observed.
Figure 2. In situ temperature from across-shelf transects from four cruises in the southern part of the sampling region (figure 1). Dashed contours indicate temperatures below 0°C. The contour interval is 0.25°C from -2.0 to 1.0°C. The contour interval above 1.0°C is 0.2°C. The ocean bottom, determined by soundings during the March to May cruise, is indicated by shading. (A) January and February 1993 cruise. (B) March to May 1993 cruise. (C) August to September 1993 cruise. (D) January and February 1994 cruise.

References

