Palmer LTER: Bacterial exoprotease activity in the Antarctic Peninsula region during austral autumn 1993

JAMES R. CHRISTIAN and DAVID M. KARL, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii 96822

Extensive in vivo measurements of exoprotease (leucine carboxypeptidase, or LAPase) activity of antarctic marine bacterioplankton were made on the austral autumn 1993 long-term ecological research (LTER) cruise of the RV Nathaniel B. Palmer. The LTER grid consists of 10 transect lines running approximately perpendicular to the Antarctic Peninsula at 100-kilometer (km) intervals, extending from the coast to 200 km offshore. The lines are numbered 000 to 900 from south to north, and the stations are given numbers from 000 to 200 from inshore to offshore (Waters and Smith 1992).

LAPase activity was measured using the fluorescent substrate analog L-leucyl-beta-naphthylamine (LLBN; Somville and Billen 1983). LLBN is added to a 6-milliliter water sample to a final concentration of 1 millimole per liter. This ensures saturation of all available sites so that the measured activity represents an index of the amount of enzyme present in a sample. Samples are incubated for 24 hours at 0°C and the free beta-naphthylamine liberated is measured in a Perkin-Elmer LS-5B spectrofluorometer.

Average activity for each station is based on depth-integrated (trapezoid rule) activities from individual water samples. Integration is to 80 meters (m) or to the greatest sampling depth at a few shallow-water stations. Enzyme activity is expressed in nanomoles per liter per hour (depth-integrated activity divided by integration depth).

Onshore-offshore gradients are largely absent. Several lines show regions of elevated activity that may correspond to frontal zones (figure 1), but in general, activities are as great in the offshore waters of the Antarctic Circumpolar Current as in Bransfield Strait and near the coastal islands of the Palmer Archipelago. Activities are typically fairly constant from the surface to a depth of 60-120 m, where they decline sharply.

LAPase activity in the upper 80 m is not correlated with water depth, which ranges from less than 100 m to greater than 3,000 m (figure 2). LAPase activity is relatively constant from the 900 to the 400 line and then declines toward the southern end of the grid (figure 3). Because the cruise took place in the austral autumn and the southern stations were...
LAPase activity in the shelf and oceanic waters of the Antarctic Circumpolar Current are surprisingly high and extend to significant depths. LAPase activity tends to decline sharply around the pycnocline. In Gerlache Strait during austral summer 1991–1992, LAPase activities declined sharply at depths of 10 to 40 meters (Christian and Karl 1992). On the seaward edge of Anvers Island on this cruise, activities comparable to those at the surface extended to depths as great as 100 m. Although summertime activities in Gerlache Strait are higher than those measured on this cruise, the depth-integrated activity may be greater in outer shelf and oceanic waters where wind mixing extends to greater depths.

The absence of a strong onshore-offshore gradient has significant implications for the remineralization of organic matter in the southern oceans. The data presented here are potential activities measured at saturating substrate concentrations. The rate of enzymatic hydrolysis in situ is controlled by the rate of supply of suitable substrate. If turnover rates are high, there will be little horizontal advection of phytoplankton-derived detritus. If turnover rates of dissolved peptides and proteins are low, however, as might be expected in a permanently cold environment (Pomeroy and Deibel 1986), production and consumption of dissolved organic matter may be uncoupled in time and space, and attempts to “close the loop” and balance photosynthesis and respiration must integrate over fairly large space and time scales.

We thank G. Tien, J. Dore, and T. Houlihan for their assistance in sample collection. This research was supported by National Science Foundation grant OPP 91-18439, awarded to D. Karl. (SOEST contribution number 3338.)

References


